

en

MANUAL REGIO RCX SERIES

THANK YOU FOR CHOOSING REGIN!

Regin provides comprehensive solutions for building automation, including intuitive BMS-solutions, freely programmable and pre-programmed controllers, field devices and more.

Regin's offer, in combination with DEOS and Industrietechnik, empower system integrators, installers, and property owners with a powerful toolbox, setting them in a position to create building automation solutions that save both energy and engineering time. Today, versatile building management, optimized room control, and effective workflows have become the pillars for leading property owners in realizing significant energy savings in properties. Regin shares the clear goal of the group; to make this challenge easier on the way towards a sustainable future.

DISCLAIMER

The information in this manual has been carefully checked and is believed to be correct. Regin makes no warranties about the contents of this manual and users are requested to report errors and discrepancies to Regin, so that corrections may be made in future editions. The information in this document is subject to change without prior notification.

Some product names mentioned in this document are used for identification purposes only and may be the registered trademarks of their respective companies.

© AB Regin. All rights reserved.

Rev. D, 2025-10-07

1	Intro	ductic	n	5
	1.1	About 1	this manual	5
	1.2		nformation	
2	Info	rmatio	n for the end user	6
_				
	2.1		one controllers	
		2.1.1	Applications	
		2.1.2	Mounting	
	2.2	_	RCX	
		2.2.1	Communication	
	2.3		, LEDs and buttons	
		2.3.1	User interface description, for models with display	
		2.3.2	User interface description, for models without display	9
		2.3.3	RGB LED functions	9
	2.4	Navigat	tion - controller menu	10
		2.4.1	Controllers with display	10
		2.4.2	Controllers without display	
	2.5	Detecti	ion sensor - PIR	
		2.5.1	Range	
		2.5.2	Detection pattern	
	2.6		nsor	
		2.6.1	CO ₂ sensor integration and measurement range	
		2.6.2	Automatic self-calibration	
	2.7		ng values	
	2.7	2.7.1	Controllers with display	
	2.8		uration	
	2.0	Comig	aracion	10
3	Info	rmatio	n for the specialist	18
	3.1	Regin:	GO app	18
		3.1.1	Language	
		3.1.2	Application data	
		3.1.3	Introduction Regin:GO app	
		3.1.4	Accessing, operation, and settings in the Regin:GO app	
		3.1.5	Bluetooth® activation	
	3.2		ation tool 2	
		3.2.1	Open Application tool 2	
	3.3		and menus	
	0.0	3.3.1	Display settings	
		3.3.2	Values to display	
	3.4		Import, and Export configurations	
	3.5		on overview	
	3.3	3.5.1	Control functions.	
		3.5.2	Extra zone	
		3.5.2	Inputs/Outputs	
		3.5.4		
		3.5.5	Fan control	
			Display and menus	
		3.5.6	Controller settings	
	2 C	3.5.7	Manual/Auto	
	3.6		GO - Menu structure	
	3.7		function examples - Regio RCX series	
		3.7.1	Hotel 1 - Heating (actuator radiator)+ VAV and Extra Zone (control of bathroom	
			w. floor heating)	
		3.7.2	Hotel 2 - Heating (battery) + Cooling (battery) + Fan Control (EC-Fan)	
		3.7.3	Office - Heating/Cooling (change-over) + Fan Control	95
		3.7.4	Conference - Heating (actuator radiator) + Cooling (chilled ceiling) + VAV	
			(CO_2)	
	3.8		nsor calibration	
	3.9	Externa	al sensors	103

Table of Contents

	3.10	Sensor values via communication.	
	3.11	Special functions	
		3.11.1 Condensation sensor	
		3.11.2 Window contact	
	3.12	Communication	
		3.12.1 Networks, interfaces and protocols - Factory default	
		3.12.2 Communication settings	
	3.13	Update software	
		3.13.1 Updating the device software in Regin:GO	
	3.14	Factory reset	
		3.14.1 Resetting the device to factory settings	108
4	Info	rmation for the installer	110
	4.1	Installation	110
		4.1.1 Installation preparations	
		4.1.2 Using labels	
		4.1.3 Mounting	
		4.1.4 Wiring	
		4.1.5 Wiring - Control function examples	
		4.1.6 Troubleshooting	
5	Cont	formity	118
Δn	nenc	dix A Technical data	119
<i>γ</i> (ρ	A.1	General data	
	A.1 A.2	Communication	
	A.3	Inputs & outputs	
	A.3	mputs & outputs	120
Ар	penc	dix B Model overview	121
Ар	penc	dix C Alarm list	122
	C.1	Alarms	
۸n	nanc	dix D Terminal list	127
ΑÞ	•		
	D.1	Wiring - Terminal list	123
Ар	penc	dix E Licenses	
	E.1	Cube MX	124
	E.2	FreeRTOS	124
	E.3	Fonts	125
	E.4	JSMN	

1 Introduction

1.1 About this manual

Special text formats used in the manual:

Note! This box, text, and symbol are used to highlight useful tips and tricks.

Caution! This box, text, and symbol are used to highlight cautions.

Warning! This box, text, and symbol are used to highlight warnings.

This box is used to show formulas and mathematical calculations

This box is used to represent the display window on the controller

1.2 More information

- ✓ Regio RCX Product sheet
- √ Regio RCX Instruction
- ✓ Regio RCX Variable list
- √ Regio RCX Manual (this document)

All the above documents are available for download from Regin's website, www.regincontrols.com.

Note! All settings and configurations of the Regio RCX room controllers should be done with the Regin:GO app or Application tool 2.

2 Information for the end user

2.1 Regio zone controllers

The Regio RCX series comprises a wide range of room controllers that handle everything from heating, cooling, and ventilation to humidity and CO_2 monitoring. Regio RCX can be used to create anything from stand-alone systems for managing functions in a single room to being part of large, integrated systems with a comprehensive SCADA system.

2.1.1 Applications

The Regio RCX controllers have a discrete design and are easy to use, with an intuitive graphical LED matrix front and stylized touch buttons (depending on the model). They are suitable for buildings where you want optimal comfort and low energy consumption, such as offices, schools, shopping centres, airports, hotels, and hospitals.

In a room, the Regio RCX controller can measure and detect, for example:

- ✓ Temperature
- √ CO₂ level
- ✓ Relative humidity level
- ✓ Presence of condensation (with external condensation sensor)
- ✓ Motion of a user
- √ Air quality (VOC)
- ✓ If a window is open

2.1.2 Mounting

The modular design with a separate backplate for wiring, available in several models, makes the whole Regio RCX series easy to install and commission. The controllers are mounted directly on a wall or in a wall box (backplate).

For more information, see Table B-2 Backplate assembly models in Appendix B Model overview.

For more information about mounting, see the RCX-... Instruction, to be found at www.regincontrols.com. Or, see detailed information in *chapter 4.1 Installation*.

2.2 Regio RCX

2.2.1 Communication

RS485

The controllers can be connected to a central SCADA-system via RS485 (EXOline, Modbus, or BACnet), and configured for a particular application using the Application tool 2, which can be downloaded free of charge at www.regincontrols.com. For more information, see section 3.2 Application tool 2.

The Arrigo template is adapted to support the Regio RCX series models (RCX-...).

Bluetooth® Low Energy

Bluetooth

Communication is also supported by Bluetooth® (Regin protocol compatible with the Regin:GO app).

The controllers can be connected to the Regin:GO app (iOS/Android) and a cloud back end via Bluetooth® Low Energy. For more information, see section 3.1.5 Bluetooth® activation.

For Regin:GO default access level passwords, see section 3.1.4 Accessing, operation, and settings in the Regin: GO app.

For more information, see section 3.1 Regin:GO app.

Caution! When you configure the device exclusively via RS485 using Application tool 2, it is recommended to disable Bluetooth® Low Energy (BLE) during setup. If BLE remains enabled, the device may still be accessed and reconfigured via Regin:GO using the default password. Please note that this password can only be changed within the Regin:GO interface.

2.3 Display, LEDs and buttons

2.3.1 User interface description, for models with display

The user interface consists of three (3) touch sensitive buttons, and a display made up of a matrix of LEDs (25x11 pixels), in a plastic casing. The display can be seen through the plastic material, and the buttons can be pressed by touching the icons printed on the front cover.

Note! LED display and buttons are not available on all models. For more information, see *Table B-1 Controller models* in section *Appendix B Model overview*.

If no interaction has taken place with the room controller for a while, the display can emit light with full intensity as usual, be dimmed to emit a lower light intensity, or completely be shut off depending on the settings made by the administrator. If you set the display to be dimmed, or to be shut off when inactive, the room controller blends in with the room and is then not likely to disturb the end user. The dimmed mode is preferable for situations where you not want to be distracted by the light emitted by the room controller. Such as, at a hotel, where guests sleep in the room where the room controller is mounted, or in an office, where employees do not want to be distracted by a bright display. It is up to the administrator and the installer of the room controller to configure when the product should be dimmed, or lit.

The Regio RCX controller user interface is shown in Figure 2-1 Regio RCX controller model with display.

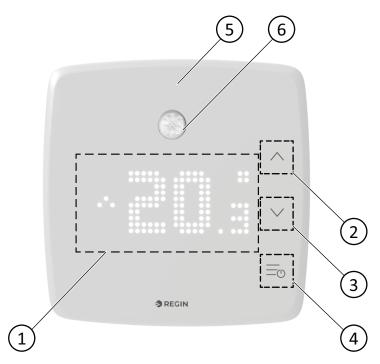


Figure 2-1 Regio RCX controller model with display

- ① LED matrix ④ [Menu] button
- ② [Down] arrow button ⑤ RGB LED light (for controllers with/without display)
- 3 [Up] arrow button 6 PIR sensor (on selected models)

Table 2-1 describes the buttons and LED matrix available on Regio RCX controllers with and without display.

Table 2-1 Button and LED descriptions for Regio RCX controllers with display

Controllers with display				
Nº	Nº Description			
1	LED matrix with the current mode or value displayed			
2	[Down] arrow button ▼. Used for toggling values downwards.			
3	[Up] arrow button ▲. Used for toggling values upwards.			
4	[Menu] button ≡. Used for navigation in menu.			
5	RGB LED light. Used for Bluetooth® and CO ₂ level indications. For more information, see section 2.3.3 RGB LED functions.			

Idle LED display

When no button is pressed, the LED display will return to idle mode after a time-out. After a configurable time delay, the LED display will first dim and then be turned off (by default).

The value shown in idle mode is configurable:

- ✓ Actual temperature
- √ Actual setpoint + adjustment
- ✓ Heat setpoint
- ✓ Cool setpoint
- ✓ Average value of heating and cooling setpoint
- ✓ Setpoint adjustment
- √ CO₂ level
- ✓ Heat setpoint + adjustment
- ✓ Cool setpoint + adjustment
- ✓ Average setpoint + adjustment
- ✓ Calculated air flow

2.3.2 User interface description, for models without display

For controllers without display (and then also without buttons) all configurations are made via the Regin:GO app or Application tool 2.

2.3.3 RGB LED functions

An RGB LED is present above the LED display (in upper front area for models without display). With the LEDs you will be notified if and when the Bluetooth® is activated or not, and when the CO_2 sensor indicates CO_2 levels, if these functions are activated. The RGB LED can be configured to show the CO_2 level in green, yellow and red for low, medium and high CO_2 level respectively. The indication can be off, always active, or active only when the CO_2 value is shown in the display. See *Table 2-2 RGB LED functionality table*.

The RGB LED setting can be configured individually.

Table 2-2 RGB LED functionality table

Colour	Pattern	Description
Blue	Steady	Bluetooth® activated - device connected, or Identify pressed.
Blue		Bluetooth® temporarily activated - no device connected. If Bluetooth® is set to Always on, the LED does not blink.
Red	Steady	Indicating CO ₂ high level
Yellow	Steady	Indicating CO ₂ medium level
Green	Steady	Indicating CO ₂ low level

2.4 Navigation - controller menu

2.4.1 Controllers with display

Organized menu structures enable users to navigate through different configuration options and access various features efficiently, ensuring a logical and user-friendly interface.

Figure 2-2 Controller model with display

Menu button

The [Menu] button cycles through all available set *Menu* options. Which options are available depends on the model, the set configuration, and the connected sensors.

Up/Down buttons

In idle mode, the up/down buttons will initiate setting of the setpoint adjustment. Such as, when the fan control page is selected with the [Menu] button, the [Up] & [Down] buttons will increase/decrease the fan speed.

Display indications

When no button is pressed, the LED display will return to idle mode after a time out. After a configurable time delay the display will first be dimmed, then turned off. The display settings can be customized. See the document *RCX - Menu structure*, to be downloaded at www.regincontrols.com.

The display indications are shown in Figure 2-3 Indications in the controller display 1 and Figure 2-4 Indications in the controller display 2.

Figure 2-3 Indications in the controller display 1

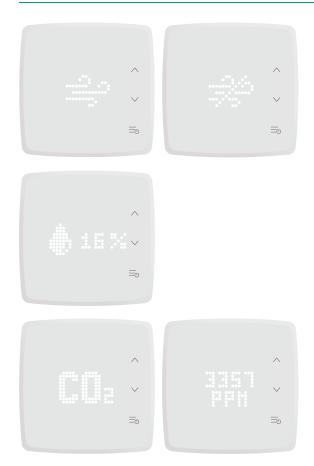


Figure 2-4 Indications in the controller display 2

Figure 2-5 Indications in the controller display 3

When setting the setpoint adjustment, the value shown on the display is configurable as follows:

- √ Setpoint adjustment
- ✓ Actual setpoint
- √ Heating setpoint
- ✓ Cooling setpoint
- √ Heating setpoint, Occupied + adjustment
- √ Cooling setpoint, Occupied + adjustment
- ✓ Average cooling/heating setpoint

The display and function indications are described in *Table 2-3* and *Table 2-4*.

Table 2-3 Display indication descriptions

Indication	Description
Actual temperature	When you press the [Up] arrow button, the temperature setpoint is increased, and when you press the [Down] arrow button, the temperature setpoint is decreased. The increment of each button press is of 0.5 °C. The range of the temperature is normally between 18 to 24 °C and can be adjusted only by the administrator of the room controller. For the temperature setting to take effect, the user must wait 10 seconds (s) without pressing any buttons. The display then returns to the current default view. When the user presses one of the arrow buttons, the temperature setpoint is shown and the LED display flashes between the dimmed mode and full intensity mode.
Actual fan speed	When you press the [Up] arrow button, the fan speed setpoint is increased and when you press the [Down] arrow button, the fan speed setpoint is decreased. The fan can be set in three (3) levels - 1, 2, and 3. For the fan speed setting to take effect, the user must wait 10 seconds (s) without pressing any buttons. The display then returns to the current default view.

In *Table 2-4* you find descriptions of the functions in the menu and their indications, available when you press the **[Menu]** button.

Table 2-4 Function indication descriptions

Indication	Description
Fan speed	The fan symbol rotates at different speeds when the user cycles the speeds with the arrow buttons. The fan can rotate with three different speeds, visualized with three bars on the display. The fastest fan speed is reached by pressing the up arrow repeatedly. Pressing the down arrow button repeatedly slows the fan down in increments until it turns the fan to OFF, and the animated fan stops spinning.
Fan Auto	The fan speed Auto mode simply adjust the fan speed automatically, depending on the need.
Fan Off	The fan speed is set to Off. The fan is disengaged.
Forced ventila- tion On	The setting Forced ventilation On lets in fresh air, as it enables a damper to open so that new, fresh air from the duct flows into the room. The benefit of forced ventilation is that even though the fresh air is brought into a room, the current temperature is not changed.
Forced ventila- tion Off	The forced ventilation setting is disabled by default (visualized with a breeze of air that is crossed over).
Relative humidity level	The relative humidity level of the room is presented as a percentage along with a drop symbol. This is only indoor climate information, and no action can be taken to adjust the levels.
CO ₂ level	The system measures the amount of CO ₂ in the room. The value is displayed in the unit parts per million (ppm).
VOC level	The system measures the VOC level in the room according to a VOC index. See section <i>VOC Control</i> . The VOC level screen switches after a brief delay. This is only indoor climate information, and no action can be taken to adjust the levels.

2.4.2 Controllers without display

Controllers without a display have the same functionality, with either the built-in sensors (varies for different models) or with external sensors. No button or display interaction can be made, apart from RGB LED indications. For more information, see section 2.3.3 RGB LED functions.

2.5 Detection sensor - PIR

2.5.1 Range

The detection range of the detection sensor (PIR sensor) is dependent on the difference between the object and the room temperature, and cannot be adjusted.

2.5.2 Detection pattern

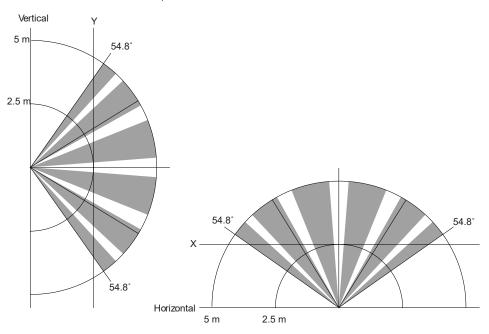


Figure 2-6 Detection pattern range PIR sensor - Vertical and Horizontal

2.6 CO₂ sensor

2.6.1 CO₂ sensor integration and measurement range

 CO_2 regulation functionality is available when either an integrated or an external CO_2 sensor is connected. The integrated sensor supports a measurement range of 0 to 2000 ppm.

2.6.2 Automatic self-calibration

The integrated CO_2 sensor includes an automatic self-calibration feature designed to ensure long-term measurement stability. This function records the lowest CO_2 concentration detected each day and performs a weekly evaluation to adjust the baseline, either upward or downward, based on observed trends. See also $3.8 \ CO_2$ sensor calibration.

For optimal performance, the monitored space must be adequately ventilated and remain unoccupied for a minimum of four (4) hours daily. This calibration method is not recommended for continuously occupied environments such as greenhouses or hospital rooms.

Note! If inaccurate readings are suspected, allow a period of 7 to 14 days for the automatic self-calibration process to stabilize and adapt.

2.7 Changing values

Below you find examples of how to change setpoints directly on the controller.

Note! Valid only for controllers with display. For more information, see section *Display indications* and *Table 2-3 Display indication descriptions*

2.7.1 Controllers with display

Performing a setpoint adjustment

For controllers with display, a setpoint adjustment of temperature and fan speed settings can be performed.

To perform a setpoint adjustment:

- 1. Press the [Menu] button until the desired function is shown
- 2. Press the [Up] or [Down] button to increase or decrease the setpoint

Note! The new set setpoint is valid instantly and need no confirmation. When you have changed a setpoint, the controller automatically returns to the previous menu state after 10 seconds.

2.8 Configuration

You use the Regin:GO app and the Application tool 2 as two ways to configure the Regio RCX series controllers. It is a matter of choice which application you use, with the important difference that with Application tool 2 you can configure several devices. With the Regin:GO app you can only configure one device at a time.

For more information, see sections 3.1 Regin:GO app and 3.2 Application tool 2.

3 Information for the specialist

3.1 Regin:GO app

The Regio RCX series controllers are Bluetooth® compatible, and can be connected via the Regin:GO app. The Regin:GO app is available on Android and iOS. It is used for upgrading, configuring, and commissioning one or several Regio RCX series controllers. The Regin:GO app can also be used to upgrade the firmware. You can get the Regin:GO app from *App store* (iPhone and iPad) or *Google play* (Android).

3.1.1 Language

The language setting is inherited from the handheld device settings.

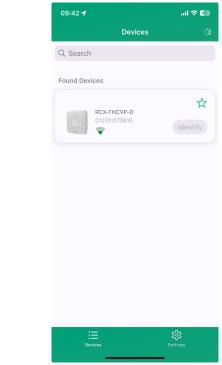
3.1.2 Application data

Updated application data will be asked for automatically the first time the app starts, but it must be updated periodically to get the latest firmware and settings.

3.1.3 Introduction Regin:GO app

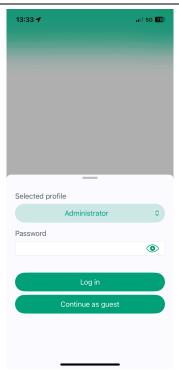
Below you find screenshots and short descriptions of some of the basic functions of the menu pages in the Regin:GO app. To access and enable operations and settings in the Regin:GO app, see section 3.1.4 Accessing, operation, and settings in the Regin:GO app.

For a complete and more detailed menu structure and available settings, see the document RCX - Menu structure, to be downloaded at www.regincontrols.com.



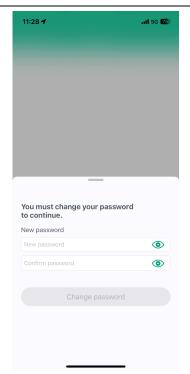
Note! Depending on your configuration, you will have different setting options.

Note! The language setting is inherited from the handheld device.


Devices page

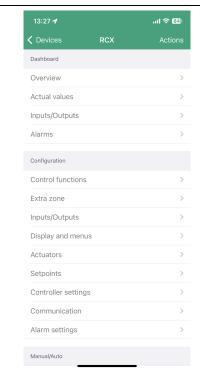
This is the first page after the logo page. The *Devices* page lists all units found, with the possibility to identify new units and create favourites in a long list of units. The list presents a unit's name and serial number. When the **Identify** button is tapped in the Regin:GO app, the unit connection symbol is lit in blue for a few seconds and then turns blinking yellow to indicate which unit is selected.

Settings page


In this page it is possible to download the needed product data files. Tap [Download].

Login pop up window

In the *Login* window you can choose the user login type, or to *Continue as guest*.


You need to be logged in as an *Administrator* to change the unit name and address, backup and restore settings, as well as doing firmware updates.

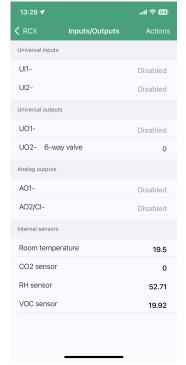
New password pop up window

Upon initial login to a device using an *Administrator* account, the *New password* dialogue prompts the user to create and confirm a new password.

Menu page

This page is a menu page to navigate to other sub-menus, such as Overview, Configuration, and Manual/Auto etc.

13:27 🗗		al 🗢 84)
< RCX	Overview	
System		
Controller		RCX-THCVP-D
PLA		254
ELA		30
Sum alarm		Occupied
Room		
Controller state		Occupied
Mode		Heating
Room temperat	ure	19.58
Room setpoint		21.5
Setpoint adjustr	ment	-0.5
Heating deman	d	13
Cooling demand	d	0
CO2 level		0
Presence detec	tion	RCX-THCVP-D

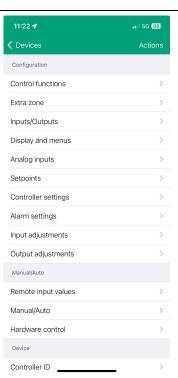

Overview page

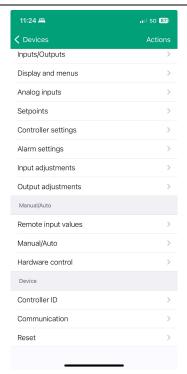
This page is an overview page where you can see the actual values of *System* and *Room* settings.

Actual values page

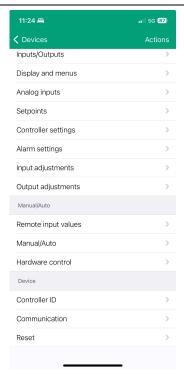
This page is an *Actual values* page where you can see actual values.

Input/Outputs page


This page is an *Inputs* and *Outputs* overview page, where you can view the actual values of all the I/O:s and the built-in sensors.


Alarms page

This page is an overview page of all alarms.


Configuration menu

This menu enables you to configure Control functions, Extra zone, Inputs/Outputs, Display and menus, Analog inputs, Setpoints, Controller settings, Alarm settings, and Input/Output adjustments.

Manual/Auto menu

This menu enables you to configure Remote input values, Manual/Auto settings, and Hardware control.

Device menu

This menu enables you to configure the *Controller ID*, *Communication* settings, and *Reset* the device.

3.1.4 Accessing, operation, and settings in the Regin:GO app

To access and enable operations and settings in the Regin:GO app, a valid password is required. See the list of access rights below.

Access rights

Administrator - password: Admin

- ✓ Update firmware
- ✓ Reset to default values
- ✓ Save and import local configuration
- √ Change password
- ✓ Read and write all values that are possible to change, including all settings and configurations

Note! You will be prompted to change the default password after the first *Admin* login. See section *Password handling*.

Guest - password: N/A

✓ Read values decided by Regin:GO app.

Activate an identification notification in the Regin:GO app

If the device has Bluetooth® Low Energy support and Bluetooth® Low Energy is turned on, it is possible to activate an identification notification in the Regin:GO app.

To activate the identification notification:

- 1. Perform a short press (<1.5 seconds (s)) to activate the identification notification
- 2. Search for a device in the app
- 3. The device, with an active notification, will show on the top of the list with a blinking frame around it

Password handling

Upon initial login to a device with administrative privileges, the system will prompt the user to update their password. It is recommended to select a strong and unique password. The updated credentials will be temporarily cached within the application for a duration of 8 hours, and will be auto-filled during this period. See section 3.1.3 Introduction Regin:GO app.

Connecting to a Regio RCX controller, with the Regin:GO app

To connect to a Regio RCX controller with the Regin:GO app:

- 1. Make sure Bluetooth® Low Energy is On in the device. Press the [Menu] button of the controller for five (5) seconds (press the lower right corner, if no [Menu] button). A blue LED indication is presented at On.
- 2. Open the Regin:GO app on your mobile device
- 3. In the **Search** field, in the **Devices** page (opens per default), type a controller serial number or wait until the Regin:GO app populates the controller by automatic detection
- 4. Tap the Device area on the desired identified controller to connect to the device

- 5. In the **Log In** dialogue, tap the **Selected profile** list and select the desired profile type. Then tap and type the corresponding password in the **Password** field.
- 6. Tap the [Login as...] button
- 7. The Regin:GO app is now connecting to the device

You can now navigate the menu in the Regin:GO app to view values or make configuration changes. For more information, see section 3.1 Regin:GO app and the document RCX - Menu structure, to be downloaded at www.regincontrols.com...

3.1.5 Bluetooth® activation

Bluetooth®

There are two settings that control the activation of Bluetooth®. The configuration of the Bluetooth® functions and the turn off after an activation, as described in section *Bluetooth® function*.

Bluetooth® function

In *Table 3-1 Bluetooth*® *functions* the four (4) different activation functions are described, with the corresponding activation procedure.

Table 3-1 Bluetooth® functions

Function	Description
Off	Bluetooth® is disabled. Only serial line communication is possible.
Always On	Bluetooth® is always activated. LED indication is off.
On after start up	Bluetooth® is activated after power on for a configurable time. LED indication is On.
Activated by button (default)	Bluetooth® is activated by pressing the [Menu] button of the controller for five (5) seconds (the lower right corner, if no [Menu] button). LED indication is On.

When Bluetooth® is temporarily activated (valid for the functions On after startup or Activated by button), it is indicated with a blue LED flash every five (5) seconds.

Turn off after activation

Turn off after activation is only applicable for the Bluetooth® function options *On after start up* and *Activated by button*, meaning the time in seconds that Bluetooth® should be activated. The permissible range for the setting value lies between 10 and 3600 seconds (default 120 s).

3.2 Application tool 2

The Application tool 2 is a PC-based configuration software tool. It is used for upgrading, configuring, and commissioning one or several Regio RCX series controllers.

Warning! Always disconnect the control unit from the power supply before connecting or disconnecting any connectors on the control unit.

3.2.1 Open Application tool 2

The Application tool 2 opens a dialogue at startup where you can create an offline project, open an existing project, or connect to a Regio RCX controller via an RS485 serial connection.

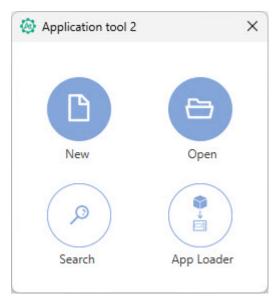


Figure 3-1 Application tool 2 start dialogue

To create and open a new offline project, click the [New] button.

To open an already existing project, click the [Open] button.

To search and connect to a controller, click the [Search] button.

The *App Loader* function can be used when you just want to upload the application to the controller. It is then not possible to configure the settings in the controller. Just send the application to the controller. Click the [App Loader] button, and upload the application to the controller.

Serial search

The **Search** window can also be opened by pressing [F7] on your keyboard, or from the **Tools** menu, via **Search**. Select **Search** serial and choose the serial port to be used.

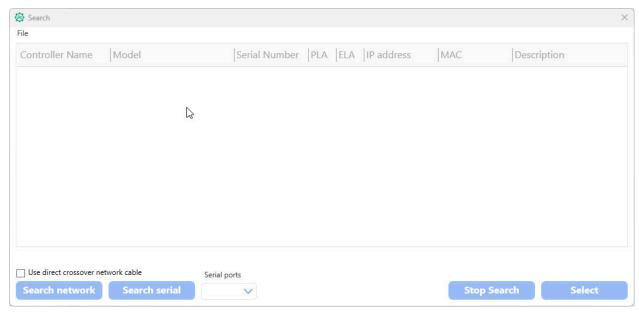
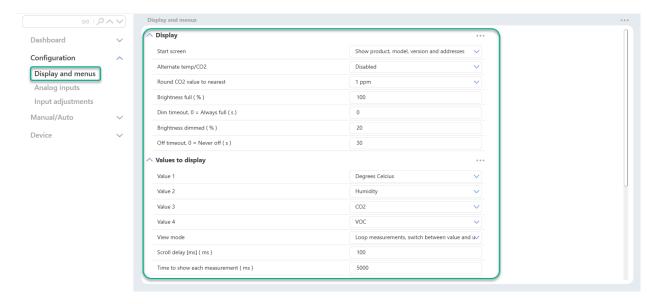



Figure 3-2 The Application tool 2 Search window

3.3 Display and menus

3.3.1 Display settings

The Regio RCX room transmitter has a constant on display.

Table 3-2 Display settings list describes the LED brightness and time-out variables. You set the properties under **Display** in the **Display and menus** page in Regin:GO or Application tool 2.

Table 3-2 Display settings list

Configuration setting	Variable name	Description
Brightness full (%)	Disp_BrightnessFull	Display brightness setting (value between 0 and 100).
Start screen	DisplayStartupMode	Setting for what values are shown at start-up. The selectable values are: No startup screen Show product Show product and model Show product, model and version Show product, model, version, and addresses
Round CO2 value nearest	RC_CO2Step	1, 50, 100 ppm.

3.3.2 Values to display

You can select up to four (4) different values to show on the display. The selected values will alternate between each other, in different ways, depending on the *display_mode* variable setting.

You can make settings to adjust the behaviour of the display. Such as, time settings before changes. See *Table 3-3 Display mode settings values* and *Table 3-4 View mode variables*.

Table 3-3 Display mode settings values

Configuration setting	Variable name	Description
Value 1	display_frame_1_value	Select the first sensor value to display. See section <i>Display value settings</i>
Value 2	display_frame_2_value	Select the second sensor value to display. See section <i>Display value settings</i>
Value 3	display_frame_3_value	Select the third sensor value to display. See section <i>Display value settings</i>
Value 4	display_frame_4_value	Select the fourth sensor value to display. See section <i>Display value settings</i>
View mode	display_mode	Select the view mode. How the value and the unit will display on the LED. The settings are: Loop measurements, switch between value and unit Loop measurements, scroll with wrapping if needed Loop measurements, scroll with bounce if needed Scroll all measurements with wrapping if needed Scroll all measurements with bouncing if needed For detailed value names, see Table 3-4
Scroll delay (ms)	display_scroll_speed	Determines the time in milliseconds (ms) between scrolling one pixel. Decrease value to scroll faster. (50 - 1000 ms, Default: 100 ms)
Time to show each measurement (ms)	display_toggle_time_ms	Determines the duration for displaying each measurement before transition to the next one. Valid for configuration settings - Loop measurement, switch between value and unit, Loop measurements, scroll with wrapping if needed, and Loop measurements, scroll with bounce if needed. (50 - 30000 ms. Default: 5000 ms) See Table 3-4 View mode variables
Time to show each measure- ment value (ms)	display_value_time_ms	Determines the duration for displaying the value on the screen before transition to the unit. Please note that the variable display_toggle_time_ms is independent of this setting and you must make sure that the value time and unit time fits at least once within the toggle time. Valid for configuration setting - Loop measurement, switch between value and unit. See Table 3-4 View mode variables (50 - 30000 ms. Default: 2000 ms)
Time to show each measure- ment unit (ms)	display_unit_time_ms	Determines the duration for displaying the unit on the screen before switching back to the value. Please note that the variable display_toggle_time_ms is independent of this setting and you must make sure that the value time and unit time fits a least once within the toggle time. Valid for configuration setting - Loop measurement, switch between value and unit. See Table 3-4 View mode variables (50 - 30000 ms. Default: 600 ms)

Table 3-4 View mode variables

Configuration setting	Variable name	Description
Loop measurement, switch between value and unit	ALTERNATE	Alternate between available measurements and alternate between value and unit.
Loop measurements, scroll with wrapping if needed		Alternate between available measurements and scroll value and unit with wrapping (from end to beginning of the text), if both does not fit.
Loop measurements, scroll with bounce if needed	SCROLL_BOUNCE	Alternate between available measurements and scroll value and unit bounce at end of unit if both does not fit.
Scroll all measurements with wrapping if needed	SCROLL_ALL_WRAP	Put all measurement in a long row that scrolls on the display, wrap from the end to the beginning.
Scroll all measurements with bouncing if needed	SCROLL_ALL_BOUNCE	Put all measurement in a long row that scrolls on the display, bounce at the ends.

Display value settings

The variables <code>display_frame_1_value</code> to <code>display_frame_4_value</code> are used to select the values to show in the display. There are a selection of allowed values.

Table 3-5 Display values, allowed

Setting values	Value	Variable name	Description
-	0	NONE	Do not show value
Degrees Celsius	1	DEGC	Temperature, (°C)
-	2	-	-
Humidity	3	RH	Relative humidity, RH (%)
CO2	4	PPMCO2	CO ₂ , (ppm)
VOC	5	VOC	VOC (value between 0 and 500)
Count down timer	6	EXTTIME	Count down timer. Will show Off , if not active.
Custom text 1	7	TEXT1	Show custom text string 1. See section Display Custom text.
Custom text 2	8	TEXT2	Show custom text string 2. See section Display Custom text.
UI1	9	UI1	Value on universal input 1
UI2	10	UI2	Value on universal input 2
Count down timer, if active	11	EXTTIMEACTIVE	Count down timer, Will show only if active.

Display Custom text

You can configure two (2) display custom text variables to show your own custom text in the display. The below character map below is implemented in the device. See *Figure 3-3 Display character map*, 5 px, 7 px & 10 px.

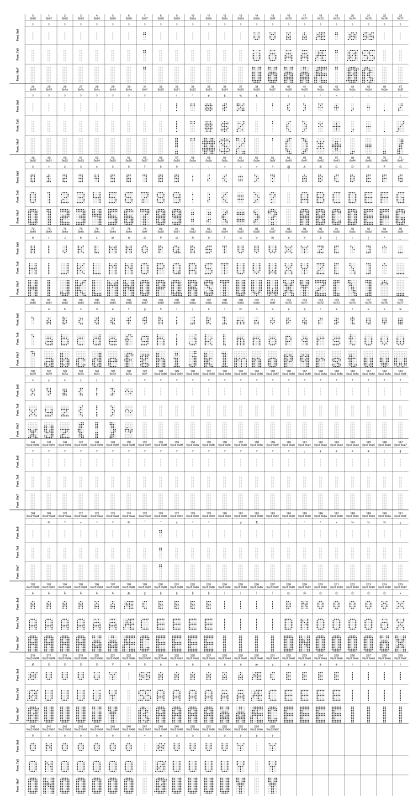


Figure 3-3 Display character map, 5 px, 7 px &10 px

You can set the texts for two separate strings in the display by configure variables. The text string can be up to 64 characters in length. You can also set the visibility time and text scroll parameters, if needed.

Note! If both custom text strings (variable *rt_text_row_1* and *rt_text_row_2*) are selected together, they will show after each other.

The font used in single row mode is always 5 px. However, the font size can also be set to a 7 px high or a 10 px high font, for dual rows.

Table 3-6 Custom text variables

Setting values	Variable name	Description	
View mode	rt_text_visability	When to show the custom text: 0 = ACTIVETIME_ALLOW_CANCEL: Show when remaining time is > 0. Show as menu item, if a button has been pressed until remaining time is 0. 1 = ACTIVETIME: Force display until remaining time is 0. 2 = AS_MENU: Show as a menu item as long as text is not empty.	
Display mode	rt_text_mode	How to show the custom string in the display: 0 = SINGLEROW: Show only one row of text. 1 = DUALROW: Show two rows of text.	
Scroll mode	rt_text_display_scroll_mode	When to show the custom text 0 = SCROLL_WRAP: Scroll text if needed, wrap from end to beginning. 1 = SCROLL_BOUNCE: Bounce text in the end positions, if needed. 2 = SCROLL_WRAP_SYNC: Bounce text in the end positions, if needed. Sync row 1 and 2. 3 = SCROLL_BOUNCE_SYNC: Bounce text in the end positions, if needed. Sync row 1 and 2.	
Font	rt_text_font	The font to use in single row mode (dual row mode is always 5px): 0 = AUTO: Adapt font to fit on screen, use as large as possible, if it does not fit, use scrolling and smallest font 1 = 5 px, 5 px high font. 2 = 7 px, 7 px high font. 2 = 10 px, 10 px high font	
Scroll delay (ms)	rt_text_display_scroll_speed	Time in milliseconds (ms) between scrolling one pixel. Decrease value to scroll faster.	
Custom text timer value (s)	rt_text_timeleft	Time in seconds (s) to show the custom text in the display. This variable will count down to 0. Set to any value to enable the custom text for that time.	
Custom text row 1	rt_text_row_1	String to show as Custom text 1 in the display, when the text timer (<i>Active timer value</i>) is active. The string can be up to 64 characters (if special characters are used it might be less due to the UTF8 encoding).	
Custom text row 2	rt_text_row_2	String to show as Custom text 2 in the display, if selected and when the text timer (<i>Active timer value</i>) is active. The string can be up to 64 characters (if special characters are used, it may be less due to the UTF8 encoding).	

Special characters

There are some special character sequences that can be used to insert measurement values from the device into the custom text. See *Table 3-7 Special characters*.

Table 3-7 Special characters

Special string	Description
@00#	Current room temperature
@01#	Current room humidity
@02#	Current room CO ₂ level
@03#	Current room VOC index
@04#	Universal input 1 value
@05#	Universal input 2 value
@06#	Controller name

3.4 Set up, Import, and Export configurations

You can create configurations in both the Application tool 2 and the Regin:GO app, and then export and import them in both tools when needed. For more information, see the *Exporting and Importing a Settings file* instruction, to be downloaded at www.regincontrols.com.

3.5 Function overview

3.5.1 Control functions

Room Control Sequence function

The Room Control Sequence function enables the controller to support control of various room HVAC systems, that is, different combinations of heating, cooling, and variable air volume (VAV) devices that are part of a room. This function is used for setting up a regulation case.

Based on the selected controller sequences, the controller outputs one or multiple control signal sequences, denoted *Sequence 1*, *Sequence 2*, and *Sequence 3*. The signal sequences control the heating, cooling, and VAV devices in the room, and are assigned to the different controller outputs via configuration.

Figure 3-4 shows the drop down that is used to select a control sequence in Application tool 2.

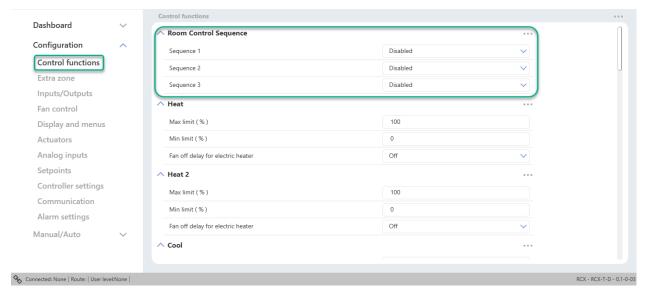


Figure 3-4 Room control sequence selection in Application tool 2

Control sequences

The control sequences are set in three (3) freely selectable sequence steps.

There are three (3) sequence steps to be chosen and configured in Application tool 2. Each step can be set to one (1) of the following functions:

- ✓ Unused
- ✓ Heat
- √ Heat 2
- ✓ Cool
- ✓ Cool 2
- ✓ VAV
- ✓ VAV 2
- √ Change-Over
- ✓ Change-Over VAV
- ✓ 6-way valve

Excluded from the sequences are overall outputs like *Fan-control* and *Forced ventilation*. The sequence settings are also not dependent on the actuator (valve) type, which will be selected at a later stage.

Note! Depending on the function selected, there are additional parameters to be set for each sequence.

For each sequence either an analogue or digital output can be used to control a valve/damper actuator.

Order of sequence steps

The sequences will always be utilized in order, from one (1) to three (3). When the controller is in heating mode, cooling sequences will be skipped and vice versa. A 6-way valve sequence is both a heating and cooling sequence. A Change-over sequence will be considered a heating or cooling sequence depending on its mode, see section Change-over.

Allowed sequence combinations

Not all control sequence combinations are possible. As a general rule, the faulty sequence step will be ignored and considered unused.

Some examples of illegal control sequence combinations:

- ✓ Every function can be used only once in the three (3) chosen sequences. If any duplicates are found, such as two *Heat 1* sequences, the first one found will be used and the second will be ignored.
- ✓ The Heat 2, Cool 2, and VAV2 cannot be used without the Heat 1, Cool1, and VAV1 sequences respectively. If they are used without each other, they will be ignored.

Sequence Functions

Disabled

If one sequence is unused, Disabled, this will always be ignored.

Heating (Heat, Heat 2)

Up to two (2) heating sequences can be configured, *Heat 1* and *Heat 2*.

The following settings can be made:

- ✓ Max limit (%)
- ✓ Min limit (%)
- √ Fan off delay for electric heater

This sequence is suitable for applications where you want to control a heating source, such as a radiator.

The controller acts as a heating controller and regulates based on the heating setpoint and the current room temperature.

The controller is always in heating mode and outputs a heating signal, **Heating output (%)**, that is configured on the controller outputs by using the configuration values listed in *Table 3-8*.

Maximum and minimum limits for the output signal can be set. See section Minimum limit for heating output.

Table 3-8 Controller output configuration values and controller output types

Output signal	Controller output configuration value	Controller output type
Heating output (%)		Analog
Heating 2 output (%	Heating valve, thermal (PWM, Pulse Width Modulation, or use of thermostat function)	Digital

Figure 3-5 illustrates the control behaviour for this controller mode when no maximum or minimum limits are set

The heating demand increases as the room temperature falls. When the room temperature falls below the heating setpoint, **Heating output (%)** increases to respond to the heating demand. At 100% heating demand, **Heating output (%)** reaches its maximum.

When the room temperature is higher than the heating setpoint and no heating demand exists, **Heating** output (%) is at its minimum.

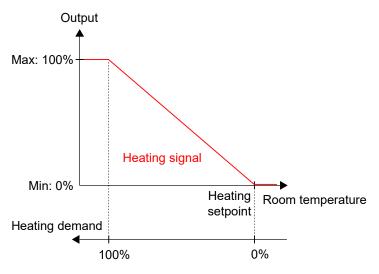


Figure 3-5 Control behaviour for the Heating sequence

Minimum limit for heating output

A minimum limit for the heating output sequence can be set. *Figure 3-6* illustrates the control behaviour for the controller mode when maximum or minimum limits are set for the heating output.

The heating output limits are active when the controller is in heating mode, and inactive when the controller is not in heating mode. Whether the controller is in heating mode or not is defined by the used controller mode. See section *Room Control Sequence function*.

Figure 3-6 illustrates how the control behaviour is affected when limits are set for the heating output. For example, when a 20% minimum limit is set, *Heating signal* is always 20% as long as the controller is in heating mode.

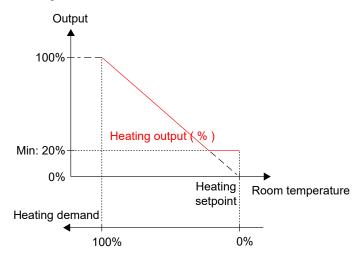


Figure 3-6 Control behaviour when maximum and minimum limits are set for the heating output

Cooling (Cool, Cool 2)

Up to two (2) cooling sequences can be configured, Cool and Cool 2.

The following settings can be made:

- ✓ Max limit (%)
- ✓ Min limit (%)
- ✓ Set to max at forced ventilation state

It is suitable to use the cooling sequence(s) when a cooling source should be controlled, such as chilled beams.

Table 3-9 Controller output configuration values and controller output types

Output signal	Controller output configuration value	Controller output type
Cooling output (%)		Analog
Cooling 2 output (%	Cooling valve, thermal (PWM, Pulse Width Modulation, or use of thermostat function)	Digital

Figure 3-7 illustrates the control behaviour for this controller mode when no maximum or minimum limits are set.

The cooling demand increases as the room temperature rises. When the room temperature rises above the cooling setpoint, the Cooling output (%) signal increases to respond to the cooling demand. At a cooling demand of 100%, the Cooling output (%) signal reaches its maximum.

When the room temperature is lower than the cooling setpoint and no cooling demand exists Cooling output (%) signal is at its minimum.

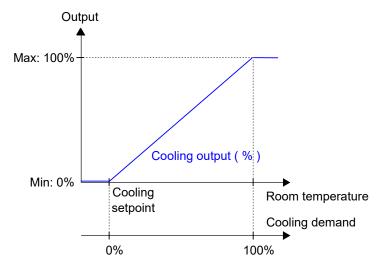


Figure 3-7 Control behaviour for the Cooling sequence

VAV (VAV, VAV 2)

Up to two (2) VAV sequences can be configured, VAV 1 and VAV 2.

The following settings can be made:

- ✓ Max limit (%)
- ✓ Min limit, off (%)
- √ Min limit, unoccupied (%)
- ✓ Min limit standby (%)
- ✓ Min limit, occupied (%)
- ✓ Min limit, forced ventilation (%)
- ✓ Set to max at forced ventilation state (on, off)
- ✓ Max limit when heating (%)
- ✓ Minimum Limit for VAV Output

This function is intended to put a minimum flow in VAV systems. As such the function puts a minimum output on the VAV output regardless if the controller is in heating or cooling mode.

✓ Maximum Output Limit when Heating

This setting is used to open the VAV-damper at *Heating* mode. The purpose is to increase the airflow into the room at *Heating* mode if the heater is placed in the duct.

When the function is active, the VAV output follows the heat output between the configured minimum limit and the configured maximum limit. No scaling of the output is used, the VAV has the same value as the heat output.

The minimum and maximum VAV limits have precedence. When used together with the minimum and maximum VAV limits, the VAV signal is never lower than the minimum VAV limit and never higher than the maximum VAV limit, regardless of the configuration of this function.

This controller mode is suitable for room HVAC systems that use low supply air temperature that is distributed into the room via a diffuser damper to provide cooling and fresh air. The air must be pretreated and cooled since the diffuser damper itself does not have any cooling capacity.

The controller acts as a cooling controller and regulates based on the cooling setpoint and the current room temperature. In addition, the controller can be set to regulate based on fresh air demand instead of cooling demand, or based on cooling demand and fresh air demand simultaneously, see section VAV control source. The controller regulates based on fresh air demand by using CO_2 control. See section CO_2 control.

The controller is always in cooling mode and outputs a VAV signal, VAV output (%), that is configured on the controller outputs by using the configuration value listed in *Table 3-10*.

Maximum and minimum limits for the VAV output signal are set via the VAV control function. For more information, see section VAV control source.

Table 3-10 Controller output configuration value and controller output type

Output signal	Controller output configuration value	Controller output type
VAV output (%)	VAV	Analog

Figure 3-8 illustrates the control behaviour when the controller regulates based on cooling demand, and when a minimum limit is set for the VAV output signal.

The cooling demand increases as the room temperature rises. When the room temperature rises above the cooling setpoint, VAV output (%) increases to respond to the cooling demand. At a cooling demand of 100%, VAV output (%) reaches its maximum.

When the room temperature is lower than the cooling setpoint and no cooling demand exists, VAV output (%) is at its minimum.

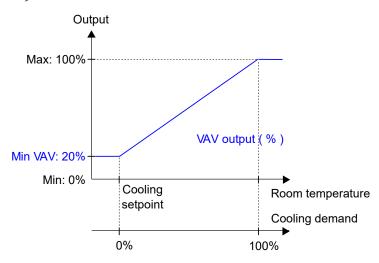


Figure 3-8 Control behaviour for the VAV controller mode when the controller regulates based on cooling demand

VAV control source

The VAV output can be controlled by cooling demand (or heating demand, see below), CO_2 level, and/or humidity. If more than one function is selected, the highest output value will be used. If no function is selected, the output will be set to the minimum value for the current controller state.

The following settings can be made:

- √ Cooling demand (On/Off)
- √ CO₂ level (On/Off)
- √ VOC Index (On/Off)
- ✓ Humidity (Off/humidify/dehumidify)

The *Variable Air Volume* (VAV) control function is used to manage the behaviour for a damper that is controlled by the analogue VAV output signal.

The VAV control function enables the controller to regulate based on:

✓ Both cooling and fresh air demand simultaneously

The highest demand determines if the VAV output signal currently is controlled based on the cooling setpoint and the room temperature, or the CO₂ setpoint and the CO₂ level in the room.

For information about CO₂ control, see section CO₂ control.

The maximum damper airflow can be controlled by setting a maximum limit on the VAV output signal. The minimum airflow that applies for each controller state can also be controlled by setting minimum limits on the VAV output signal.

The damper can also be controlled based on heating demand. This is useful when the heating device that provides the room with heat is located in the supply air duct and behind the damper that regulates the airflow into the room. When this function is active and the heating demand increases, the damper opens correspondingly and the distribution of heat into the room is boosted. This function is active when the Max limit when heating configuration setting is greater than zero.

Normally for cooling

The VAV control function is enabled, and the VAV control configuration settings in the Regin:GO app or the Application tool 2 are shown when the VAV sequence is selected:

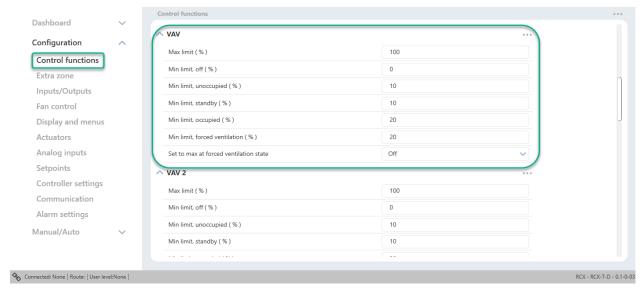


Figure 3-9 VAV control configuration settings in Application tool 2

The VAV control configuration settings are described in *Table 3-11*.

Table 3-11 VAV control configuration settings.

Configuration setting	Description
Max. limit (%)	Specifies the maximum limit for the VAV output signal for all controller states.
Min. limit, off (%)	Specifies the minimum limit for the VAV output signal when the controller is in the Controller off state.
Min. limit, unoccupied (%)	Specifies the minimum limit for the VAV output signal when the controller is in the <i>Unoccupied controller</i> state.
Min. limit, standby (%)	Specifies the minimum limit for the VAV output signal when the controller is in the Standby controller state.
Min. limit occupied (%)	Specifies the minimum limit for the VAV output signal when the controller is in the Occupied controller state.
Min. limit, forced ventilation (%)	Specifies the minimum limit for the VAV output signal when the controller is in the Forced ventilation state.
Set to max. at forced ventilation state	When the controller is in <i>Forced ventilation</i> state the output will be set to the maximum limit value.

Figure 3-10 illustrates the control behaviour for the Heating + VAV controller mode when VAV control is performed based on cooling demand, a maximum limit is set, and minimum limits for the Occupied and Unoccupied controller states are set.

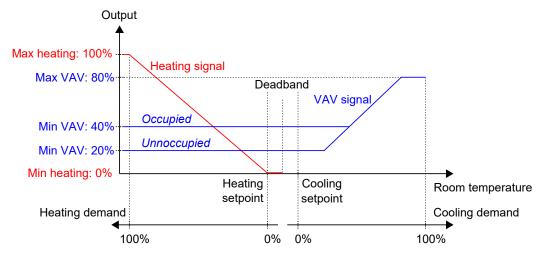


Figure 3-10 VAV control behaviour based on cooling demand when a maximum limit is set, and minimum limits for the occupied and unoccupied controller states are set

Figure 3-11 illustrates the control behaviour for the Heating + VAV controller mode when the **limit for VAV** output at heating demand setting is applied. For example, when a 50% maximum is set, the VAV signal follows the heating signal as the heating demand increases but never exceeds 50% of its practical maximum (100%).

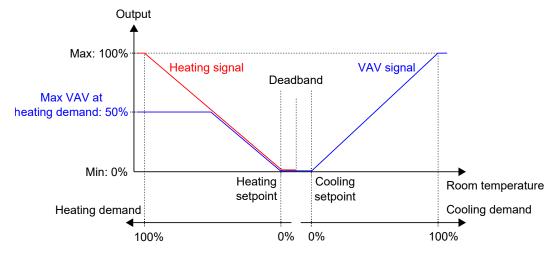


Figure 3-11 Control behaviour for the Heating + VAV controller mode when the maximum VAV output on heating demand setting is applied

Change-over

Change-over is a control function that enables the controller to provide both a heating or a cooling signal on the same controller output. This is achieved by shifting the controller Change-over state from Heating to Cooling, and vice versa. The Change-over function makes it possible to use the controller in a 2-pipe change-over HVAC system, where warm or cold media flow in the same pipes and one valve is used to regulate both heating and cooling distribution.

The following settings can be made:

- ✓ Max limit (%)
- ✓ Min limit (%)
- ✓ Mode (Always heating/Always cooling/Digital input/Media temperature, simple/Media temperature, advanced)
- √ Change-over temperature (°C)
- √ Heating hysteresis (°C)
- ✓ Cooling hysteresis (°C)
- √ Valve delay time (s)

Heating/Cooling via Change Over is used when a heating/cooling system uses the same water pipes for heating and cooling. Heat or cool water is produced centrally and distributed in the pipes to the battery. To detect whether there is warm or cool water in the pipes, the controller measures the temperature of the pipes or a digital input is used to select heating or cooling.

Mode Change:

The change between heating and cooling mode can be controlled in different ways:

- ✓ Manual control via communication
- ✓ Digital input
- ✓ Measuring the temperature of the heating/cooling medium and compare it to either a fixed value or the room temperature.

When the valve is closed, the measurement of the media temperature may not be reliable. Therefore, when the output value is less than 20%, the valve is opened fully at regular intervals and kept open for a defined time before the temperature is measured.

For more information, see section Change-over.

6-way valve

The 6-way valve is a valve that makes it possible to use a 2-pipe beam in a 4-pipe system. The 6-way valve sequence can be combined with additional heating or cooling sequences.

The following settings can be made:

- ✓ Seq 1 fully open (V)
- √ Seq 1 start opening (V)
- ✓ Seq 2 fully open (V)
- √ Seq 2 start opening (V)
- ✓ Center point (V)
- ✓ Center point hysteresis (%)
- ✓ Sequence order (Heating 1st sequence/Heating 2nd sequence)

The 6-way valve is closed at centre position (5 V), runs heat water from 5 - 0 V, and cool water from 5 - 10 V. A hysteresis is present in the centre.

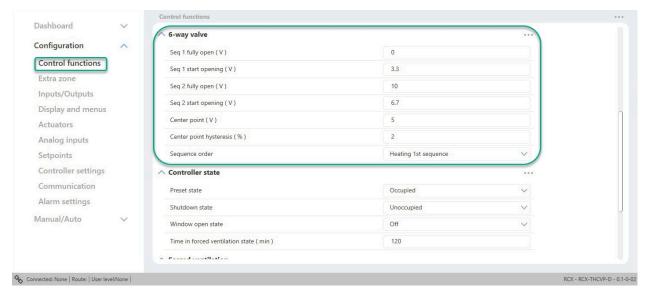


Figure 3-12 6-way valve configuration settings in Application tool 2

At *Heat* sequence the PI-controller output is scaled between the heat water start open and heat water fully open values. Hence, at default settings, the 0 - 100% PI-controller output is scaled form 3.3 V (0% + hysteresis) to 0 V (100%). At *Cool* state the PI-controller output is scaled between the cool water start open and cool water fully open values. Hence, at default settings, the 0 - 100% PI-controller output is scaled from 6.7 V (0% + hysteresis) to 10 V (100%).

Around the centre point there will be a small hysteresis, default \pm 0.5 V, but configurative (0 - 2 V). This is to avoid the valve to flicker at small controller outputs. When the PI-control output has passed the hysteresis, the value will immediately go up to the start level and start controlling from PI-controller output + hysteresis. The output is set back to the centre point value when the PI-controller reaches 0% output. This functionality can be set by using the value listed in *Table 3-12 6-way valve configuration setting*.

The sequence of the output could be reversed by configuration so that the *Heat* sequence corresponds to high output levels and vice versa.

The 6-way valve menu group provides a specific setting, listed in *Table 3-12 6-way valve configuration setting*, that is only applicable for the controller modes that include a 6-way valve sequence. This setting is located in the *Configuration* > Control functions > 6-way valve menu group in the Regin: GO app or the Application tool 2, and is shown when an applicable room control sequence is selected.

Table 3-12 6-way valve configuration setting

Configuration setting	Description
Seq 1 fully open (V)	Voltage for fully open at sequence 1
Seq 1 start opening (V)	Voltage to start open at sequence 1
Seq 2 fully open (V)	Voltage for fully open at sequence 2
Seq 2 start opening (V)	Voltage to start open at sequence 2
Center point (V)	Voltage for centre point, both sequences closed
Center point hysteresis (%)	Minimum output to activate the valve
Sequence order	0: Cool 1st Sequence 1: Heat 1st Sequence

Controller state

Controller state is a control function that makes it possible for the room HVAC system to operate with priority on comfort or energy saving.

The following controller states are available for use and the controller always operates in one of them:

- ✓ Off
- √ Unoccupied
- √ Standby
- √ Occupied
- √ Forced ventilation

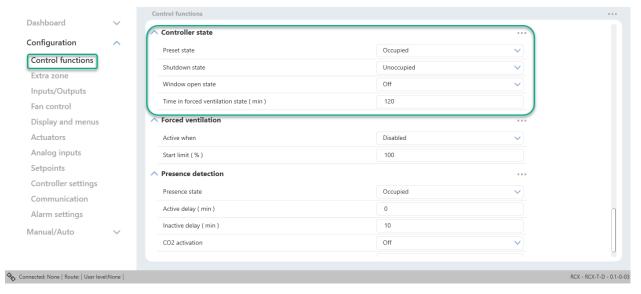


Figure 3-13 Controller state configuration settings in Application tool 2

The different controller states make use of various setpoint and deadband settings to regulate the heating and cooling distribution, as described in section Control behaviour.

The Controller state configuration settings are described in section Configuration settings, and controller state changes are described in section State changes.

An overview of the controller states is provided in *Table 3-13*.

Table 3-13 Controller state overview.

Controller state	Description	Priority
Off	This state is typically used for when the room is not in use for an extended period of time, such as during holidays or long weekends. In this state, the controller only provides heating control for frost protection, which keeps the room temperature above 8 °C.	Energy saving and frost protection
Unoccupied	This state is typically used for when the room is not in use for an extended period of time, such as during holidays or long weekends.	Energy saving
Standby	This state is typically used for when the room is not in use, temporarily or for shorter periods of time, such as during evenings, nights, or weekends.	Energy saving
Occupied	This state is typically used for when the room is in use.	Comfort
Forced ventilation	This state is typically used for when the room is in use, and when a temporary maximum flow of fresh air is needed. Such as, when the room needs an extra boost of fresh air prior to a scheduled meeting that is going to fill up the room with a large amount of people, or due to a high CO ₂ level. The increase in airflow is achieved by using the Forced ventilation function. See section Forced ventilation.	Comfort and improved air quality

Control behaviour

This section describes the control behaviour for the different controller states when the controller regulates based on heating and cooling demand.

Off

In this state, the controller does not regulate based on the configured occupied heating and cooling setpoints. Instead, the controller only provides heating control based on the configured frost protection setpoint. Setpoint adjustment is not active in this controller state.

Active setpoint: The configured frost protection setpoint.

Figure 3-14 illustrates the control behaviour when no maximum or minimum limits are set for the output signal.

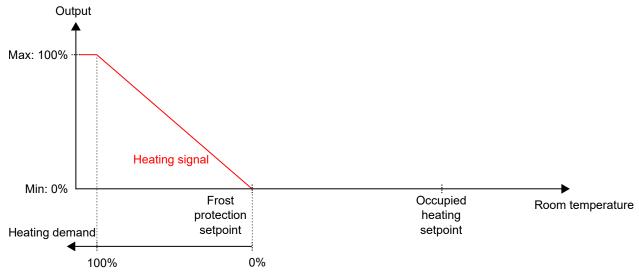


Figure 3-14 Control behaviour for the off controller state

Unoccupied

In this state, the controller does not regulate based on the configured occupied heating and cooling setpoints. Instead, the controller provides heating and cooling control based on the configured unoccupied heating and cooling setpoints. Setpoint adjustment is not active in this controller state.

Active setpoints: The configured unoccupied heating and cooling setpoints.

Figure 3-15 illustrates the control behaviour when no maximum or minimum limits are set for the output signals.

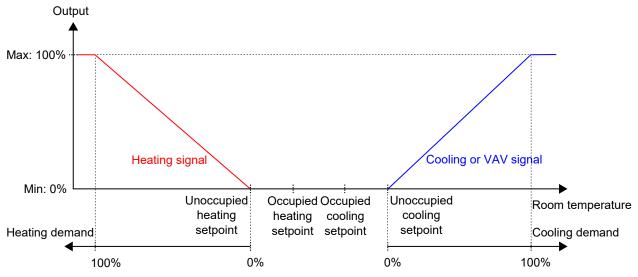


Figure 3-15 Control behaviour for the unoccupied controller state

Standby

In this state, the controller regulates based on the configured occupied heating and cooling setpoints, in combination with the configured **Standby** setting. Setpoint adjustment is active in this controller state.

Active setpoints: The configured occupied heating and cooling setpoints, combined with the configured Standby setting and any applied setpoint adjustment.

Figure 3-16 illustrates the control behaviour when no maximum or minimum limits are set for the output signals.

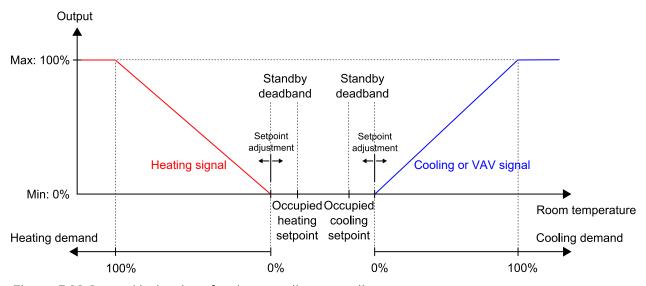


Figure 3-16 Control behaviour for the standby controller state

Occupied and Forced ventilation

In these states, the controller regulates based on the configured occupied heating and cooling setpoints. Setpoint adjustment is active in these controller states.

The *Forced ventilation* function can be used when the controller changes to *Forced ventilation* state. For information about the *Forced ventilation* function, see section *Forced ventilation*.

Active setpoints: The configured occupied heating and cooling setpoints, combined with any applied setpoint adjustment.

Figure 3-17 illustrates the control behaviour when no maximum or minimum limits are set for the output signals.

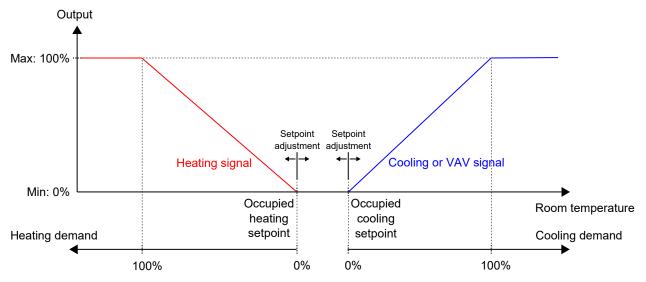


Figure 3-17 Control behaviour for the occupied and Forced ventilation controller state

Configuration settings

The controller state configuration settings are described in *Table 3-14*.

Table 3-14 Controller state configuration settings

Configuration setting	Description
Preset controller state	One of the following controller states is configured as the preset controller state: ✓ Off ✓ Unoccupied ✓ Standby ✓ Occupied (default)
Shutdown controller state	One of the following controller states is configured as the shutdown controller state: ✓ Off ✓ Unoccupied (default) ✓ Standby ✓ Occupied
Time in Forced ventilation state (min)	The period of time (in minutes) that the controller is in <i>Forced ventilation</i> state before the controller changes state to the configured preset controller state. If time is set to 0, the Forced ventilation never switches back automatically. It will need an activating trigger to leave the <i>Forced ventilation</i> state. See section <i>State changes</i> .

State changes

The controller changes state when one of the following events occur:

- ✓ Presence is detected,
 - ✓ via a presence detector, for example a motion detector, which is connected to the controller, or
 - \checkmark due to a high CO₂ level that is detected via a CO₂ sensor, which is connected to the controller.

For information about the *Presence detection* function and presence detection configuration settings, see section *Presence detection*.

- ✓ The Forced ventilation state time out expires.
- ✓ Presence is not detected anymore.
- ✓ A central command is issued via communication, for example, from a SCADA system.

Control function descriptions

This section contains descriptions of and configuration information for the controller's basic control functions.

Sequence outputs

If more than one heating or cooling sequence are selected, the controller output will be split between the sequence steps. When the first step has reached its maximum value, the second step will start increasing according to the tables and graphs in the sections *One Heat/Cool sequence*, *Two Heat/Cool sequences*, and *Three Heat/Cool sequences*.

One Heat/Cool sequence

Table 3-15 One Heat/Cool sequence

Heat/Cool demand	Output 1
0%	0%
100%	100%

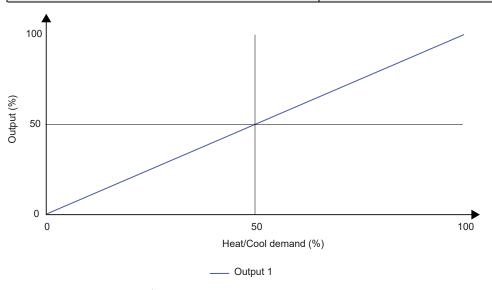


Figure 3-18 One Heat/Cool sequence behaviour

Two Heat/Cool sequences

Table 3-16 Two Heat/Cool sequences

Heat/Cool demand	Output 1	Output 2
0%	0%	0%
49%	100%	0%
51%	100%	0%
100%	100%	100%

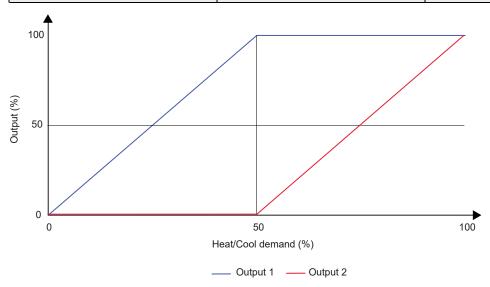


Figure 3-19 Two Heat/Cool sequences behaviour

Three Heat/Cool sequences

Table 3-17 Three Heat/Cool sequences

Heat/Cool demand	Output 1	Output 2	Output 3
0%	0%	0%	0%
32%	100%	0%	0%
34%	100%	0%	0%
66%	100%	100%	0%
68%	100%	100%	0%
100%	100%	100%	100%

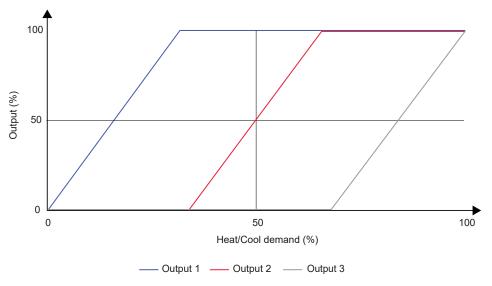


Figure 3-20 Three Heat/Cool sequences behaviour

Change-over

Change-over is a control function that enables the controller to provide both a heating or a cooling signal on the same controller output. This is achieved by shifting the controller Change-over state from Heating to Cooling, and vice versa. The Change-over function makes it possible to use the controller in a 2-pipe change-over HVAC system, where warm or cold media flow in the same pipes and one valve is used to regulate both heating and cooling distribution.

The controller *Change-over* state is either *Heating* or *Cooling*, and is managed automatically via change-over detection. See section *Change-over detection*. The controller *Change-over* state can also be set manually via the Manual/Auto settings, or via communication. See section 3.5.7 *Manual/Auto*.

The *Change-over* function is enabled and the configuration settings for change-over detection are shown in Application tool 2 when the *Change-over* sequence is selected.

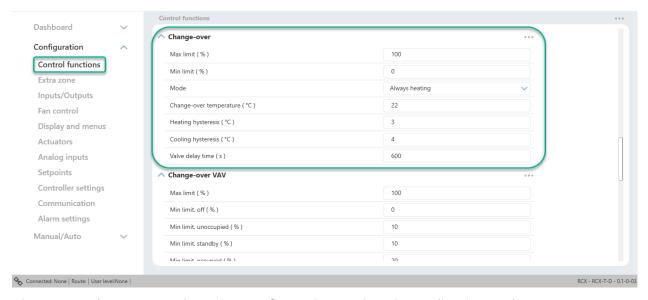


Figure 3-21 Change-over detection configuration settings in Application tool 2

Change-over detection

Change-over detection is performed either by using a PT1000 sensor that is connected to an analogue input, or by using a potential-free contact that is connected to a digital input. The PT1000 sensor is mounted so that it senses the pipe medium temperature.

When using a PT1000 sensor for change-over detection, the shift in controller *Change-over* state is triggered based on the difference between the pipe medium temperature and the room temperature. The controller shifts the *Change-over* state to *Heating* when the pipe medium temperature is 3°C (default) higher than the room temperature. The controller shifts the change-over state to *Cooling* when the pipe medium temperature is 4°C (default) lower than the room temperature.

When using a potential-free contact for change-over detection, the controller shifts the controller change-over state to *Cooling* when the contact is closed. The controller shifts the controller change-over state to *Heating* when the contact is open. This assumes that the digital input is set to **Normally opened**, see the *Configuration -> Inputs / Outputs* page/pane in Application tool 2 or in Regin:GO.

Change-over detection is configured on the controller inputs by using the values listed in *Table 3-18*.

Table 3-18 Change-over detection configuration values and controller input types

Controller input configuration value	Controller input type
Change-over temperature	Analogue
Change-over	Digital

The configuration settings for change-over detection are described in *Table 3-19*.

Table 3-19 Change-over detection configuration settings

	T
Configuration setting	Description
Mode	Always heating: Change-over state is always heating.
	Always cooling: Change-over state is always cooling.
	Digital input: Change-over state is controlled by a digital input.
	Media temperature, simple: The media temperature is compared to the Change-over temperature setting.
	Media temperature, advanced: The media temperature is compared to the room temperature.
	The change-over state is set to cooling when the media temperature goes below the reference temperature (setting or room) minus the Cooling hysteresis value.
	The state is set to heating when the media temperature goes above the reference temperature plus the Heating hysteresis value.
	The valve must be more than 20% open for the time specified in Valve delay time before the media temperature is measured.
Change-over temperature	The change-over media temperature. Only applicable in Media temperature , simple mode.
Heating hysteresis	The hysteresis value that is added to the reference temperature when switching to Heating state.
Cooling hysteresis	The hysteresis value that is subtracted from the reference temperature when switching to <i>Cooling</i> state.
Valve delay time	The time (in seconds) that the valve is open before the media temperature is measured and compared to the reference temperature. If set to 0, the function is disabled and the valve state is ignored.

Forced ventilation

Forced ventilation is a control function that is used to improve the air quality in a room through increased airflow. This is achieved by fully opening the damper that regulates the airflow into the room, which provides an additional amount of fresh air and decreases the CO_2 level. The forced ventilation function can also be used to boost the heating or cooling distribution when the heating, cooling, or VAV output signal has reached its maximum.

The *Forced ventilation* function can be used in all controller modes, and is enabled by setting the **Forced ventilation** configuration setting to anything other than **Disabled**.

The *Forced ventilation* function is activated when the controller changes to *Forced ventilation* state and the conditions specified by the *Forced ventilation* setting. For more information about *Forced ventilation* state, see section *Controller state*.

When the *Forced ventilation* function is active, a digital controller output that is configured with the **Forced ventilation** value is active, and the analogue VAV output signal is set to its maximum for the controller modes that include a *VAV* sequence. The cooling output signal can be configured to also be set to its maximum when the *Forced ventilation* is active.

The Forced ventilation configuration settings in Application tool 2 are shown in Figure 3-22.

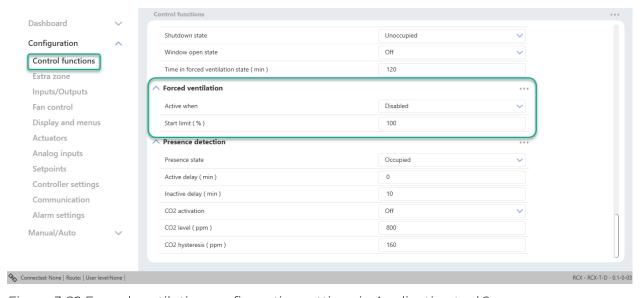


Figure 3-22 Forced ventilation configuration settings in Application tool 2

The Forced ventilation configuration settings are described in Table 3-20.

Table 3-20 Forced ventilation configuration settings

Configuration setting	Description
Active when	This setting is used to select if forced ventilation should be activated when the controller is in <i>heating</i> or <i>cooling</i> , or both. This is useful for providing an additional amount of fresh air into the room and for decreasing the CO_2 level.
	Disabled: Forced ventilation is not activated (default).
	Cooling or heating demand over limit: Forced ventilation is activated when the heating or cooling output signal is above the start limit.
	Cooling demand over limit : Forced ventilation is activated when the cooling output signal is above the start limit.
Start limit (%)	0-100

Figure 3-23 illustrates digital output signal behaviour when no maximum or minimum limits are set for the output signals, the controller is in *Forced ventilation* state, and the following configuration setting are applied:

✓ Forced ventilation *Active when*: Cooling or heating demand above limit

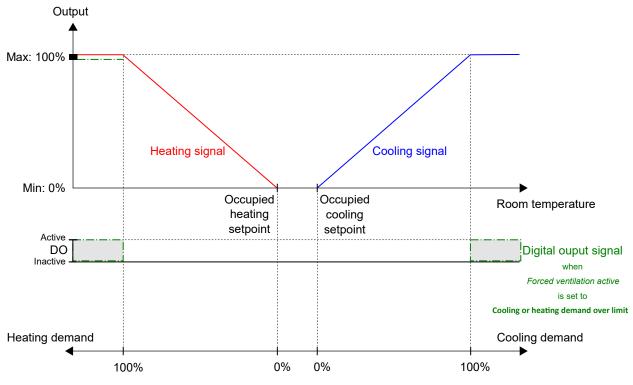


Figure 3-23 Example of forced ventilation control behaviour for the Heating + VAV controller mode when the controller is in the Forced ventilation state

Presence detection

Presence detection is a control function that makes it possible for the controller to automatically switch between controller states based on if someone is present in the room, or if the CO₂ level in the room is too high. Regin's RCX-TP, RCX-TP-D, RCX-TCP-D, RCX-THCVP-D and RCX-THCVP controllers have a built-in motion detector. For more information about controller states, and controller state changes when using presence detection, see section Controller state.

Presence detection is performed by using a presence detector, for example, a motion detector, that is connected to and configured on a digital input. Presence can also be detected by using a CO_2 sensor that measures the CO_2 level in the room, and is connected to and configured on an analogue controller input. Regin's RCX-TC, RCX-TC-D, RCX-TCP-D, RCX-THCVP-D, and RCX-THCVP controllers have a built-in CO_2 sensor. When either of these units are used, the controller recognizes the built-in CO_2 sensor automatically, and no configuration is needed.

The controller checks for presence continuously when the controller is in the state specified by the **Presence state** setting. See *Figure 3-24*.

The *Presence detection* function is enabled and the **Presence detection** configuration settings are shown in the Regin:GO app or the Application tool 2 when any of the configuration values listed in *Table 3-21* are configured on a controller input.

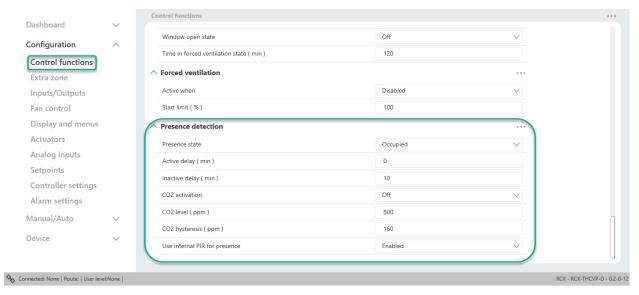


Figure 3-24 Presence detection configuration settings in Application tool 2

Table 3-21 Presence detection configuration values and controller input types

Controller input configuration value	Controller input type
CO ₂ sensor	Analogue
Presence state	Digital

The **Presence detection** configuration settings are described in *Table 3-22*.

Table 3-22 Presence detection configuration settings

Configuration setting	Description
Presence state	One of the following controller states is configured as active when presence is detected: ✓ Occupied (default) ✓ Forced ventilation
Active delay (min)	The controller checks for presence continuously when the controller is in the state specified by the Presence state setting. When presence is detected, a timer starts and the controller waits this delay time (in minutes) before changing to the state specified by the Presence state setting. If presence is not detected continuously during this delay time, for example, if a person leaves the room before the delay time has passed, the controller does not change to the presence detected controller state, and the timer is stopped and reset.
Inactive delay (min)	The controller checks for presence continuously when the controller is in the presence detected controller state. When no presence is detected anymore, a timer starts and the controller waits this delay time (in minutes) before changing to the state specified by the Presence state setting. If presence is detected again during this delay time, for example, if a person re-enters the room before the delay time has passed, the controller stays in the presence detected controller state, and the timer is stopped and reset.
CO ₂ activation	You can choose to set the CO₂ activation to: ✓ Off (default) ✓ On
CO ₂ level (ppm)	Presence is detected via the CO ₂ sensor when the measured CO ₂ level exceeds this value.
CO ₂ hysteresis (ppm)	Specifies the hysteresis for when presence is not detected via the CO ₂ sensor anymore. For example, if presence has been detected at 800 ppm and this setting is 160 ppm, the controller stops detecting presence at 800-160 = 640 ppm.
Use internal PIR for presence	You can choose to activate or deactivate the internal PIR sensor (if available for the model): ✓ Enabled (default) ✓ Disabled

3.5.2 Extra zone

Extra zone is a secondary control loop that works independently of the main sequence, but with only one sequence step.

This function allows for more precise control and customization to meet particular comfort or operational requirements. The integration of an *Extra zone* function provides flexibility, adaptability, and efficiency in managing the environment to meet the diverse needs and preferences of occupants in different parts of a room(s). A typical application is heating of a bathroom in a hotel room.

The Extra zone function is intended to control the under-floor heating in an extra zone, such as a bathroom, in parallel to the controlling main room. This means that the extra zone control runs with the same presence triggers as the main room (presence sensor, key card switch, remote state, etc.), meaning it always listens to the main room's control state and acts accordingly.

The Extra zone control is activated when the main zone controller state is the same or higher than the selection in Table 3-25.

The *Extra zone* function acts as a heating or cooling controller and regulates based on its own heating or cooling setpoint and the *Extra zone* temperature sensor.

The digital output *Extra zone* active signal is corresponding to the **Activate Extra zone** setting and does not require any *Extra zone temperature sensor* to work. It only indicates if the main room is in a selected control mode or higher.

The Regio RCX Extra zone function can be set to one of the following functions:

- ✓ Disabled
- ✓ Heating
- ✓ Cooling

In **Configuration** Controller settings you can set the following:

- ✓ P-band (°C)
- ✓ I-time (s)

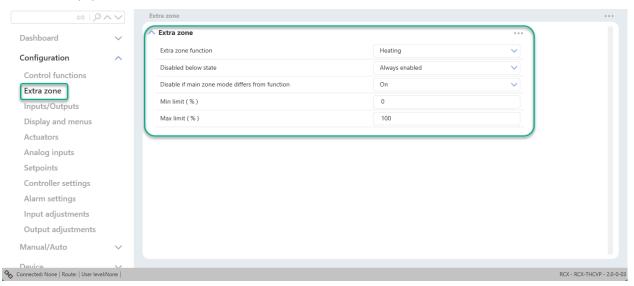


Figure 3-25 Extra zone configuration settings in Application tool 2

The Extra zone configuration settings are described in *Table 3-25*.

Table 3-23 Extra zone input signals

Input signal	Controller input type
Extra zone temperature	Analogue

Table 3-24 Extra zone output signals

Output signal	Controller output type
Heating valve Extra zone, thermal (PWM, Pulse Width Modulation)	Analogue
Heating valve Extra zone 010 V	Analogue
Extra zone active signal	Digital

Table 3-25 Extra zone configuration settings

Configuration setting	Description
Extra zone function	One of the following controller states can be configured: ✓ Disabled (default) ✓ Heating ✓ Cooling
Disabled below state	One of the following controller states is configured as active when presence is detected: ✓ Always enabled (default) ✓ Unoccupied ✓ Standby ✓ Occupied ✓ Forced ventilation
Disable if main zone mode differs from function	If the main zone sequence differs in function, the Extra zone can be set separately to: ✓ On ✓ Off
Min limit (%)	The Extra zone output minimum limit (in percentage).
Max limit (%)	The Extra zone output maximum limit (in percentage).

Minimum unit state

The Extra zone function will turn off if the unit state is lower than this setting.

Disable if main zone mode differs from function

If the *Disable if main zone mode differs from function* is enabled and set to on, the *Extra zone* will turn off if the function is set to heating and the main controller is set to cooling, or vice versa.

3.5.3 Inputs/Outputs

Universal inputs

In *Universal inputs* you can set the UI1 and the UI2 settings, depending on your system configuration needs.

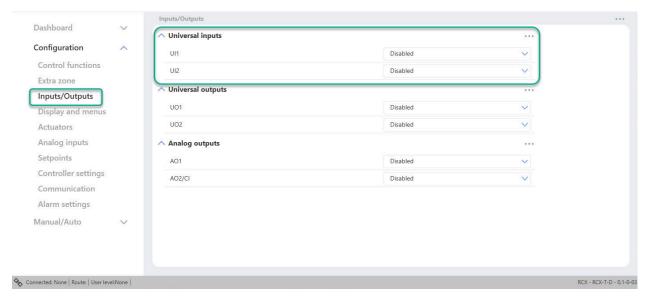


Figure 3-26 Universal inputs configuration settings in Application tool 2

Table 3-26 UI1 settings

Setting	Description	
Disabled (default value)	No use of UI1	
External room temperature	Use of External room temperature sensor, sub-settings available	
Change-over temperature	Use of Change-over temperature sensor, sub-settings available	
Extra zone temperature	Use of Extra zone temperature sensor, sub-settings available	
Supply air temperature	Use of Supply air temperature sensor, sub-settings available	
Extract temperature	Use of Extract temperature sensor, sub-settings available	
Change-over VAV temperature	Use of Change-over VAV temperature sensor, sub-settings available	
CO2 sensor	Use of CO2 sensor	
Flow sensor	Use of Flow sensor	
RH sensor	Use of RH sensor	
External room sensor 010V	Use of External room sensor	
VOC sensor	Use of VOC sensor	
Presence detector	Use of Presence detector, sub-settings available	
Open window	Use of Open window sensor, sub-settings available	
Change-over	Use of Change-over switch, sub-settings available	
Change-over VAV	Use of VAV Change-over switch, sub-settings available	
Condensation sensor	Use of Condensation sensor, sub-settings available	
External alarm	Use of External alarm, sub-settings available	

Table 3-27 UI2 settings

Setting	Description	
Disabled (default value)	No use of UI2	
CO2 sensor	Use of CO ₂ sensor, sub-settings available	
Flow sensor	Use of Flow sensor, sub-settings available	
RH sensor	Use of RH sensor, sub-settings available	
External room temperature 010V	Use of External room temperature sensor- (010V), sub-settings available	
VOC sensor	Use of VOC sensor, sub-settings available	
Presence detector	Use of Presence detector, sub-settings available	
Open window	Use of Open window sensor, sub-settings available	
Change-over	Use of Change-over switch, sub-settings available	
Change.over VAV	Use of VAV Change-over switch, sub-settings available	
Condensation sensor	Use of Condensation sensor, sub-settings available	
External alarm	Use of External alarm, sub-settings available	

Universal outputs

In *Universal outputs* you can set the UO1 and the UO2 settings, depending on your system configuration needs. The universal outputs can also serve for digital outputs.

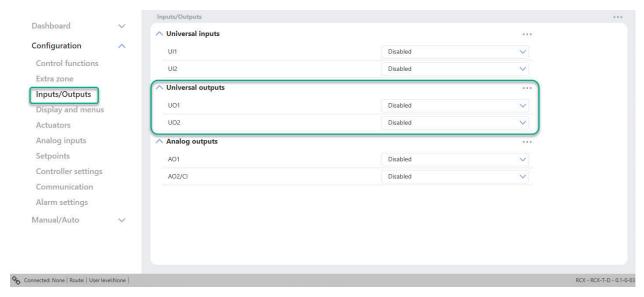


Figure 3-27 Universal outputs configuration settings in Application tool 2

Table 3-28 UO1 settings

Setting	Description	
Disabled (default value)	No use of UO1	
EC fan	Use of EC fan, sub-settings available	
CO2 control	Use of CO ₂ control, sub-settings available	
Humidifier	Use of Humidifier, sub-settings available	
Dehumidifier	Use of Dehumidifier, sub-settings available	
VOC control	Use of VOC control, sub-settings available	
Forced ventilation	Use of Forced ventilation, sub-settings available	
Sum alarm	Use of Sum alarm, sub-settings available	

Table 3-29 UO2 settings

Setting	Description	
EC fan	Use of EC fan, sub-settings available	
CO2 control	Use of CO ₂ control, sub-settings available	
Humidifier	Use of Humidifier, sub-settings available	
Dehumidifier	Use of Dehumidifier, sub-settings available	
VOC control	Use of VOC control, sub-settings available	
Forced ventilation	Use of Forced ventilation, sub-settings available	
Sum alarm	Use of Sum alarm, sub-settings available	

Analogue outputs

In *Analogue outputs* you can set the AO1 and the AO2/CI settings, depending on your system configuration needs.

Note! The analogue outputs can not be used for digital output.

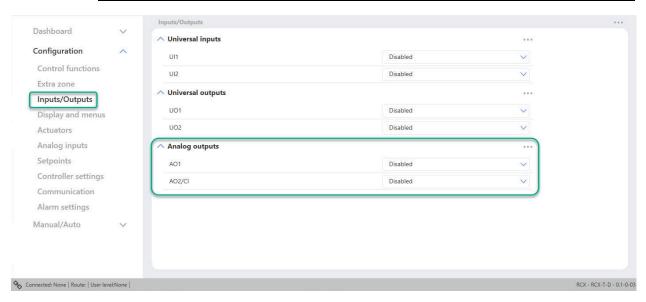


Figure 3-28 Analogue outputs configuration settings in Application tool 2

Table 3-30 AO1 settings

Setting	Description	
EC fan	Use of EC fan, sub-settings available	
CO2 control	Use of CO ₂ control, sub-settings available	
Humidifier	Use of Humidifier, sub-settings available	
Dehumidifier	Use of Dehumidifier, sub-settings available	
VOC control	Use of VOC control, sub-settings available	

Table 3-31 AO2 settings

Setting	Description	
EC fan	Use of EC fan, sub-settings available	
CO2 control	Use of CO ₂ control, sub-settings available	
Humidifier	Use of Humidifier, sub-settings available	
Dehumidifier	Use of Dehumidifier, sub-settings available	
VOC control	Use of VOC control, sub-settings available	
CI driver	Use of CI driver, sub-settings available	

3.5.4 Fan control

The Fan control function is enabled and the EC-fan control configuration settings are shown in the Regin:GO app or the Application tool 2 when the configuration value listed in Table 3-32 is configured on a controller output.

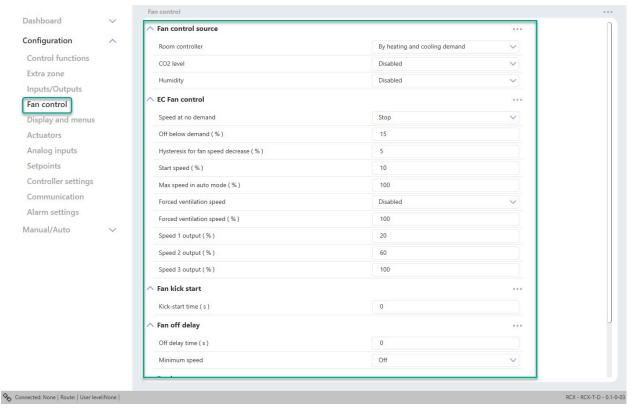


Figure 3-29 Fan control configuration settings in Application tool 2

The controller outputs a fan speed signal, EC Fan speed (%), that is configured on a controller output by using the value in *Table 3-32*.

In auto mode, the EC Fan speed (%) signal corresponds to the current heating or cooling demand, as illustrated in *Figure 3-30*.

In manual mode, the EC Fan speed (%) signal is independent of the current heating or cooling demand. Instead, the fan speed 1, 2, and 3 signals are defined by the settings Speed 1 output (%), Speed 2 output (%), and Speed 3 output (%) respectively.

Table 3-32 EC-fan control configuration value and controller output type

Output signal	Controller output configuration value	Controller output type
EC Fan speed (%)	EC fan	Analog

The Fan control configuration settings are described in *Table 3-33*.

Table 3-33 EC fan control configuration settings

Configuration setting	Fan mode applicability	Description
Fan control source	Room controller	Disabled: Fan control in auto mode is disabled. By heating demand: Fan control in auto mode is active at heating demand. By cooling demand: Fan control in auto mode is active at cooling demand. By heating and cooling demand: Fan control in auto mode is active both at heating and cooling demand (default).
	CO2 level: Fan is controlled by CO ₂ output	Disabled: Fan not controlled by CO2 output. Enabled: Fan is controlled by CO2 output.
	Humidity : Fan is controlled by humidity output	Disabled : Fan <u>not</u> controlled by humidity output. Enabled : Fan is controlled by humidity or dehumidify output.
EC Fan control		Speed at no demand: Fan never stops in auto mode Off below demand (%): Fan is off when the heat or cool demand is lower than this setting Hysteresis for fan speed decrease (%): Hysteresis for fan speed outputs Start speed (%): Min EC fan speed in % Max speed in auto mode (%): Max EC fan speed in % Forced ventilation speed: Enable or disable fan to run when forced ventilation is active Forced ventilation speed (%): Forced ventilation EC fan speed Speed 1 output (%): EC fan speed for manual speed 1 Speed 2 output (%): EC fan speed for manual speed 2 Speed 3 output (%): EC fan speed for manual speed 3
Fan kick start	Auto and manual	Kick-start time (s): Fan kick start time
Fan off delay	Auto and manual	Off delay time (s): Fan afterblow run time. 0 = Not active Minimum speed: Fan afterblow min speed.
Fan boost		Disabled: Fan boost is disabled. By heating demand: Fan boost is active at heating demand. By cooling demand: Fan boost is active at cooling demand. By heating and cooling demand: Fan boost is active both at heating and cooling demand (default).
	Auto and manual	Boost time (s): Fan boost run time. 0 = Not active
	Auto and manual	P-band:Fan boost P band

Figure 3-30 illustrates the EC fan control behaviour in auto mode when a 90% maximum limit is set for the fan speed output signal, and a 10% heating and cooling demand threshold value for when the fan should start is set.

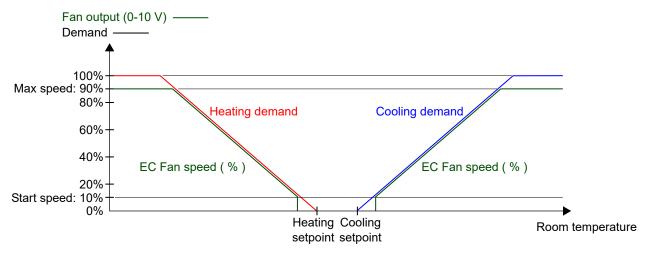


Figure 3-30 EC fan control behaviour in auto mode

Figure 3-31 illustrates the EC fan control behaviour in manual mode when a 90% maximum limit is set for the fan speed output signal.

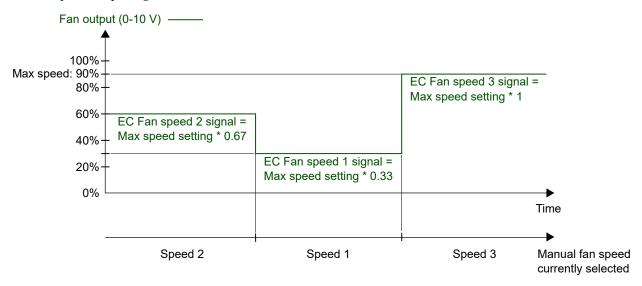


Figure 3-31 EC fan control behaviour in manual mode (fan speed 1, 2, or 3)

Fan boost

Fan boost is a control function that can be used to acknowledge to the person in the room that the fan is started when the controller detects presence. This is useful when the initial heating or cooling demand is low (the difference between the room temperature and setpoint is small), since the fan then typically runs at a low speed.

Another use case for the *Fan boost* function is to temporarily run the fan at an increased speed to provide a perceived cooling effect, until the cooling distribution from the cooling valve establishes.

The fan boost is achieved by the use of a separate fan boost controller that operates in parallel with the temperature controller, and temporarily increases the fan speed for a configured period of time (the fan boost time). P-band and I-time settings for the different controllers are located in the Configuration Controller settings menu page in the Regin: GO app or the Application tool 2.

The Fan boost function is enabled by configuring the Fan boost time setting to a value that is greater than zero.

The *Fan boost* function is activated when presence is detected, or when the controller changes to *Forced ventilation* state. The fan boost time is independent of the **Time in Forced ventilation state** configuration setting. See sections *Presence detection* and *Controller state*.

When the *Fan boost* function is active, the fan runs at maximum speed for the first 10 seconds of the fan boost time. For the remainder of the fan boost time, the fan speed output signal corresponds to whichever of the fan boost or temperature control signal that has the greatest value.

After the fan boost time has expired, the fan speed output signal corresponds to the temperature control signal, regardless if the fan boost control signal is greater than the temperature control signal. That is, the controller reverts to normal fan control, which is either auto or manual mode.

The fan boost configuration settings are described in *Table 3-34*.

Table 3-34 Fan boost configuration settings

Configuration setting	Description	
Fan boost mode	Disabled: Fan boost is disabled (default). By cooling demand: Fan boost is active at cooling demand. By heating demand: Fan boost is active at heating demand. By heating and cooling demand: Fan boost is active at both heating and cooling demand.	
Boost time (s)	The period of time (in seconds) that the Fan boost function is active.	
P-band	Fan boost P band Default value: 5°C For more information, see the RCX Variable list to be downloaded at www.regincontrols.com .	

Figure 3-32 illustrates how the Fan boost function can be used to provide a perceived cooling effect until the cooling distribution from the cooling valve is established.

In this example, the control behaviour for an EC fan in auto mode is described. It is assumed that the room temperature is 28°C and the cooling setpoint is 24°C at 0 seconds, resulting in an error value of 4, and that the error value is reduced to 0 at 300 seconds. The fan boost time is set to 90 seconds. The P-band for the fan boost controller is set to 5°C, and the P-band and I-time for the temperature controller is set to 10°C and 300 seconds, respectively.

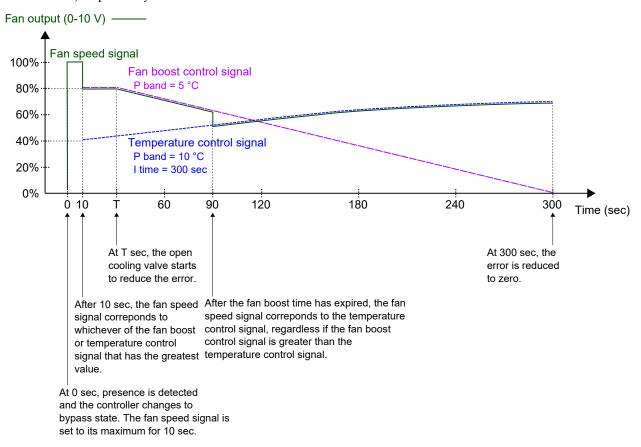


Figure 3-32 An example of fan boost control behaviour for an EC fan in auto mode, which provides a perceived cooling effect until the cooling distribution from the cooling valve establishes. The P-band for the fan boost controller has a lower value (higher gain) than the P-band for the temperature controller.

Fan kick-start

Fan kick-start is a control function that can be used to ensure that the EC fan starts even when the controller outputs a low-voltage control signal.

When using today's energy-saving EC fans, there is always a risk that the fan does not start due to a too low control voltage that prevents the fan from exceeding its starting torque. The fan then remains at a standstill while power still flows through it, which may damage to the fan. The *Fan kick-start* function ensures that the fan output is at its maximum for a set period of time, thereby making sure that the starting torque is exceeded.

The Fan kick-start function is enabled by configuring the Fan kick-start time setting to a value that is greater than zero.

The Fan kick-start function is activated when the fan starts from standstill in manual- or auto-mode.

When the *Fan kick-start* function is active, the controller sets the fan speed output signal to its maximum for the period of time specified by the *Fan kick-start time* configuration setting.

After the fan kick-start time has expired, the controller reverts to normal fan control, that is, Manual- or Auto-mode.

The Fan kick-start configuration settings are described in *Table 3-35*.

Table 3-35 Fan kick-start configuration settings

Configuration setting	Description
Fan kick-start time (s)	The period of time (in seconds) that the Fan kick-start function is active.

Mould protection

Mould protection is a control function that can be used to ensure that the EC fan always will run at least at Fan start speed.

When enabled, the fan operates independently of the controller state, whether in Auto-, or Manual-modes, or even Open window- or Presence-signals.

The minimum speed should be adjusted case by case. It is the installer's responsibility to ensure that the minimum speed is adequate to proper ventilate the room and prevent mould to appear and grow.

The *Mould protection* function is enabled by setting **Mould protection** to **On**.

3.5.5 Display and menus

Display

In *Display* you can set the default display settings in terms of the default shown view, alternating view of temperature and CO_2 value, the setpoint mode, round off of CO_2 value, display brightness, dim functions, and light time outs.

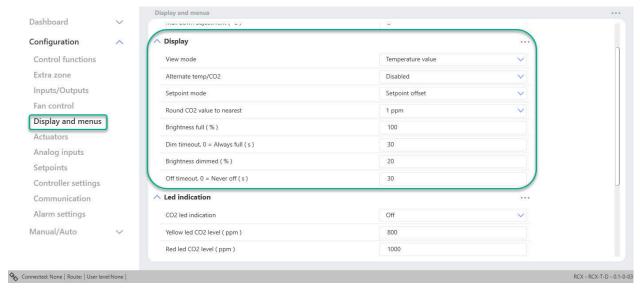


Figure 3-33 Display configuration settings in Application tool 2

Table 3-36 Display View modes

Mode setting	Description
Actual setpoint	Actual setpoint value shown on the display.
Heating setpoint	Actual heating setpoint value shown on the display.
Cooling setpoint	Actual cooling setpoint value shown on the display.
Average cooling/heating setpoint	When setting the setpoint adjustment, the value shown on the display is configurable with [Up] -arrow button or [Down] arrow button.
Setpoint offset only	When setting the setpoint adjustment, the value shown on the display is configurable with [Up] -arrow button or [Down] arrow button.
CO2 level	Actual CO ₂ level value shown on the display.
Heating setpoint + offset	When setting the setpoint adjustment, the value shown on the display is configurable with [Up] -arrow button or [Down] arrow button.
Cooling setpoint + offset	When setting the setpoint adjustment, the value shown on the display is configurable with [Up] -arrow button or [Down] arrow button.
Average setpoint + offset	When setting the setpoint adjustment, the value shown on the display is configurable with [Up] -arrow button or [Down] arrow button.
Calculated flow in the duct in I/s	When an air flow sensor is connected, this mode shows the air flow value on the display.

Table 3-37 Alternate temp/CO2 setting

Setting	Description
•	You can set the display to alternate between showing the temperature value and the ${\rm CO}_2$ level value.

Table 3-38 Other settings

Setting	Description
Round CO2 value to nearest	Setting the CO ₂ value to be rounded of in set range. 1, 50, or 100 ppm (default value = 1)
Brightness full (%)	Setting of the brightness (in %) 0-100 (default value = 100)
Dim timeout (s)	Setting of time (in seconds) Free value, 0 = Always full (s), (default value = 30)
Brightness dimmed	Setting of the dimmed brightness (in %) 0-100, (default value = 20)
Off timeout, 0 = never off (s)	Setting of the LED brightness timeout (in seconds) Free value, 0 = never off (s), (default value = 30)

LED indication

In the Regin:GO app or Application tool 2 you can set the RGB Led indication configuration for the CO_2 level.

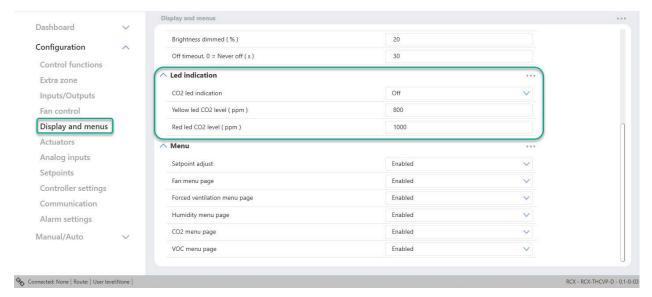


Figure 3-34 Led indication configuration settings in Application tool 2

Table 3-39 Led indication settings

Setting	Description
CO2 led indication	Set Off/On for CO ₂ led indication function, (default value - Off)
 ,	Free value threshold for yellow led warning, (default value - 800 ppm)
Red led CO2 level (ppm)	Free value threshold for red led warning, (default value - 1000 ppm)

Menu

In the Regin:GO app or Application tool 2 you can set the *Mode menu page* to enable Mode menu options. See section *Mode menu options*.

Mode menu options

In *Table 3-40 Mode menu page settings* you find descriptions of the available configuration settings in the *Display and menu* menu, where yo can choose what functions to enable when you press the [Menu] button. When you set the *Mode menu page* to Enabled, you will get the option to set [Menu] button options, which enables to configure *Controller state* of the device directly via the Menu button. See *Figure 2-5 Indications in the controller display 3* for display indications.

When the Mode menu page is enabled there are two settings for each state:

- ✓ an Enable mode setting to select if the controller state is present in the menu
- ✓ a corresponding menu Text mode for the controller state display text

There is also a Title text mode (first Menu level) and a text for the Auto option.

Note! The menu uses the same parameter as the remote controller state setting, so a setting made from the menu can be changed remotely via communication.

The text mode values are set as free text.

To select an enabled mode, see Changing controller state from the device mode menu.

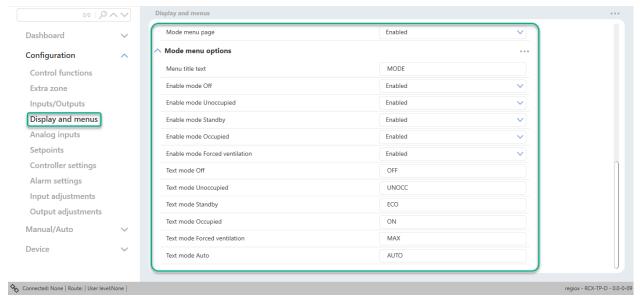


Figure 3-35 Mode menu options settings

Table 3-40 Mode menu page settings

Configuration setting	Description	
Mode menu page	When enabled this makes it possible to choose what menu items to configure. Enabled, Disabled	
Menu title text	Text field. Write text for menu title. Default value MODE.	
Enable mode Off	When enabled the mode controller state <i>Off</i> is present and can be selected in the device display. Enabled, Disabled	
Enable mode Unoccupied	When enabled the mode controller state <i>Unoccupied</i> is present and can be selected in the device display. Enabled, Disabled	
Enable mode Standby	When enabled the mode controller state <i>Standby</i> is present and can be selected in the device display. Enabled, Disabled	
Enable mode Occupied	When enabled the mode controller state <i>Occupied</i> is present and can be selected in the device display. Enabled, Disabled	
Enable mode Forced ventilation	When enabled the mode controller state <i>Forced ventilation</i> is present and can be selected in the device display. Enabled, Disabled	
Text mode Off	Text field. Write text for mode <i>Off.</i> Default value OFF.	
Text mode Unoccupied	Text field. Write text for mode <i>Unoccupied</i> . Default value UNOCC.	
Text mode Standby	Text field. Write text for mode <i>Standby</i> . Default value ECO.	
Text mode Occupied	Text field. Write text for mode <i>Occupied</i> . Default value OCC.	
Text mode Forced ventilation	Text field. Write text for mode <i>Forced ventilation</i> . Default value MAX.	
Text mode Auto	Text field. Write text for mode <i>Auto</i> . Default value AUTO.	
Forced ventilation menu page	When enabled the Forced ventilation menu selections are available. Enabled, Disabled, or Read only	
Forced ventilation extended run	When enabled the <i>Extended run</i> (timer) function is present and can be selected in the device display. Enabled, Disabled	

Changing controller state from the device mode menu

To choose an enabled controller state from the device mode menu:

- 1. Make sure the controller state mode is enabled in the device mode menu.
- 2. Press the [Menu] button on the device.
- 3. Press the [Up] or [Down] button on the device to toggle to one of the enabled and desired controller state modes.

The mode shown in the display is now selected.

See Figure 2-5 Indications in the controller display 3 for display indications.

3.5.6 Controller settings

Cascade Control

A supply air sensor can be configured on any analogue input, AI. It limits the supply air between a set Min/Max limitation. The supply air limitation works as a cascade controller with the Primary/Outer loop controlling the room temperature and the Secondary/Inner loop controlling the supply air temperature. The limits of the supply air that is possible to configure for the supply air temperature controller will act as limits for the setpoint of the supply air temperature controller.

The following settings can be made:

- ✓ Control active (Disabled/Heating/Cooling/Both Heating and Cooling)
- ✓ Cascade factor
- √ Max heating temperature (°C)
- √ Min heating temperature (°C)
- √ Max cooling temperature (°C)
- √ Min cooling temperature (°C)
- √ Frost protection temperature (°C)

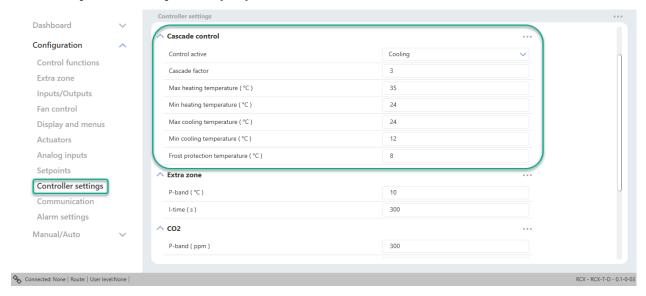


Figure 3-36 Cascade control configuration settings in Application tool 2

Control active - Heating

At *Heating* mode, the room controller works as a standard heat controller trying to keep the heat setpoint of the room. It feeds its control signal to the supply air temperature controller with the formula:

$$Setpoint_{sup.air} = HeatMin_{sup.air} + (HeatMax_{sup.air} - HeatMin_{sup.air}) \times Output_{roomctrl}$$

The supply air temperature controller works as a heat controller trying to keep the setpoint that is provided by the room controller.

Control active - Cooling

At *Cool* mode the room controller works as a standard cool controller trying to keep the cool setpoint of the room. It feeds the reverse of its control signal to the supply air temperature controller with the formula:

 $Setpoint_{sup.air} = CoolMax_{sup.air} - (CoolMax_{sup.air} - CoolMin_{sup.air}) \times Output_{roomctrl}$

The supply air temperature controller works as a cool controller trying to keep the setpoint that is provided by the room controller.

Cascade factor

For the system to perform properly, the secondary/inner controller has to be faster than the primary/outer controller, meaning the supply air temperature controller has to respond to changes much faster than the room controller. For this reason, and for ease of tuning, a cascade factor is implemented. This cascade factor defines how much faster the secondary/inner controller is compared to the primary/outer controller. If the factor is set to two, the secondary controller is twice as fast as the primary. The factor affects both the P-band and the I-time of the secondary controller. This means that P-band and I-time are only configurable for the primary controller and the P-band and I-time for the secondary are calculated with regard to the cascade factor.

Example: P-band = $10 \,^{\circ}$ C and I-time = 300 seconds for the primary controller. A cascade factor of 3 => P-band = $3 \,^{\circ}$ C and I-time = 100 seconds for the secondary controller.

The default value for the cascade factor is 3.

Frost protection temperature

In addition to the frost protection of the room, there is also a frost protection of the supply air. In contrary to the frost protection of the room, this is always active as long as the controller is in cooling mode. It works in a way that when the controller enters cooling mode, the heat setpoint for the secondary controller is set to 8° C (the configured value). When the supply air falls below the minimum limit and continues to fall, the secondary controller switches to frost protection mode and becomes a heat controller. The switch is made in the same way as when the room controller switches between Heat and Cool mode, i.e. the switch is made roughly in the middle between the minimum limit and the frost protection temperatures, when all valves are closed. When switched to the frost protection mode the secondary controller tries to keep the frost protection setpoint with the heat output.

As the frost protection setpoint has to be lower than the minimum limit of the supply air controller for the switch to frost protection mode to work, a check is made when configuring the frost protection setpoint and minimum limit for the supply air temperature. If the minimum supply air temperature is set below the current frost protection setpoint, the active frost protection setpoint is set to 1 °C lower than the supply air limit.

This function is active in all controller states (*Forced ventilation*, *Occupied*, ...).

In frost protection, the fan runs at the speed configured for lowest allowed speed (EC-fan). If the room calls for higher fan speed, this has precedence.

Valid control modes

The *Supply air limitation* function is valid in all control modes. If used with VAV control, the minimum limit of the cascade controller has precedence over the normal minimum limits for VAV control. The cascade control is not very well suited for VAV control, and the recommendation is that cascade control is used only for heating in those cases.

Fan control

The fan is running with regards to the output of the primary controller, except when the controller has entered frost protection mode. The fan runs dependent on the highest output of the room temperature controller and the supply air temperature controller.

Heat/cool select

The function can be set to run the fan in heat mode, cool mode and both heat and cool mode.

CO₂ control

 CO_2 control is an extra control loop that is controlled by the room CO_2 level. It can work independently of the main sequence or in combination with the VAV function. In that case the highest output level takes precedence.

The measurement of CO_2 is typically expressed in parts per million (ppm), or as a percentage (%). Elevated levels of CO_2 can indicate inadequate ventilation, which may lead to discomfort, drowsiness, impaired cognitive function, and can even impact overall productivity and well-being.

Common indoor air CO₂ levels are:

- ✓ Typical indoor air: 400-1,000 ppm
- ✓ Elevated indoor air: >1,000 ppm

Levels significantly higher can be a cause for concern, especially for occupant health and well-being.

External CO₂ sensors

Any type of external CO₂ sensor can be connected to Regio RCX controllers, as long as they have a 0...10 V output.

 CO_2 control is a function that enables the controller to regulate based on fresh air demand. CO_2 control is performed by connecting a CO_2 sensor, and by letting the controller control the VAV output signal based on the CO_2 setpoint and the current CO_2 level in the room.

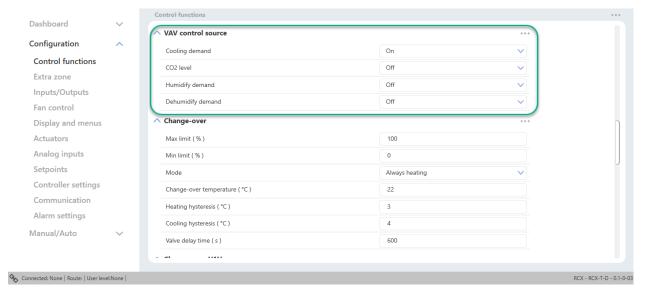


Figure 3-37 CO₂ configuration settings in Application tool 2

 CO_2 control is managed via the VAV control source function, by applying the VAV control source configuration setting. See section VAV control source.

The CO_2 sensor is connected to and configured on an analogue controller input by using the value listed in *Table 3-41*. Regin's RCX-TC, RCX-TC-D, RCX-TCP-D, RCX-THCVP and RCX-THCVP-D.controllers have a built-in CO_2 sensor. When either of these units is used, the controller recognizes the built-in CO_2 sensor automatically, and no configuration is needed.

Table 3-41 CO₂ control configuration value and controller input type

Configuration value	Controller input type
CO ₂ sensor	Analogue

CO₂ control provides a specific setting, listed in *Table 3-42*, that is only applicable for the controller modes that include a VAV sequence. This setting is located in the *Configuration* ► *Control functions* ► *VAV control source* menu group in the Regin:GO app or the Application tool 2, and is shown when an applicable room control sequence is selected.

Table 3-42 CO₂ control configuration setting

Configuration setting	Description
CO ₂ level	The VAV output signal is controlled by the CO ₂ level.

Figure 3-38 illustrates the control behaviour for CO₂ control when a minimum limit is set for the VAV output signal.

The demand for fresh air increases as the CO_2 level in the room rises. When the CO_2 level rises above the CO_2 setpoint, the VAV signal increases to respond to the fresh air demand. At a fresh air demand of 100%, the VAV signal reaches its maximum.

When the CO₂ level in the room is lower than the CO₂ setpoint and no fresh air demand exists, the VAV signal is at its minimum.

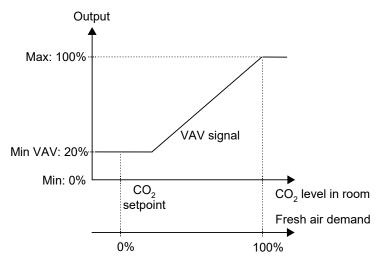


Figure 3-38 CO₂ control behaviour

Humidity control

An extra control loop that is controlled by a humidity input. It can work independently of the main sequence or in combination with the *VAV* function. In that case, the highest output level takes precedence.

The humidity control helps to maintain an optimal indoor environment. The controller uses the information from the humidity sensor to regulate the HVAC system, ensuring that the relative humidity is within a desired range for comfort and health.

For example, during colder seasons, heating systems can dry out the indoor air, leading to low humidity levels. The humidity sensor detects this and signals the HVAC system to add moisture to the air if needed, maintaining a comfortable humidity level.

Integration with a room controller allows for automated and precise control over the humidity level in a room, contributing to occupant comfort, preventing issues like mold growth, and optimising energy usage by the HVAC system.

External Humidity sensors

Any type of external Humidity sensor can be connected to Regio RCX controllers, as long as they have a 0... 10 V output.

VOC Control

An extra control loop that is controlled by the room volatile organic compounds (VOC) level. It can work independently of the main sequence or in combination with the VAV function. In that case, the highest output level takes precedence.

VOC's (Volatile Organic Compounds) are measured using specialized devices known as VOC monitors or VOC detectors. VOC detectors are designed to quantify the concentration of VOC's in the air, for RCX controllers expressed in a index number, VOC Index. This index is relative, and does not measure the actual level of VOC's (tVOC).

VOC air pollutants can be breath, cosmetics, and other body odours from people, as well as different gases and fumes from furniture, paint, plastic, or gases from cleaning or cooking activities, or similar.

Examples of air pollutants and sources can be:

Exhalation

- √ breath gases (sulphur gases)
- √ CO₂ (carbon dioxide)

Harmful gases

- √ from paint and gluing compounds (acetone)
- √ from furniture, mattresses, or building products (toluene)

Other gases

√ from alcohol, cleaning compounds, perfume (ethanol)

Odours

- ✓ from rotten food, farts (hydrogen sulphide, volatile sulfuric compounds)
- √ from pet pee (ammonia, amines)

Smoke

√ from cigarettes (benzene, nitrosamines)

The VOC Index is a valuable tool for monitoring indoor air quality, specifically related to VOC's.

The VOC Index describes the current VOC status in a room relative to the sensor's recent history. Think of it like a human nose: When we enter a room, our nose uses the air composition outside as a baseline and alerts us if it detects higher or lower levels of VOC's indoors.

The VOC algorithm processes the raw signal from the sensor. It calculates an average value over the past 24 hours and assigns it a baseline VOC Index of 100. The VOC Index then maps measured values to a range from 0 to 500. This means that in a start-up phase of a sensor, or when a sudden big change in air quality, such as re-painting of a room or similar, will leave the VOC Index with a higher average value for some time before it will be stabilized.

The VOC algorithm initializes in two phases:

- ✓ 0...1.5 h: fast adaptation to the environment. Signal always initializes in level "typical". From the beginning, sensor-to-sensor-variation is excellent and fast VOC events are shown.
- √ >1.5 h: final, slow adaptation. Even very slow changes in chemical air pollution are now visualized for best user experience.

When the VOC sensor indicates poor air quality, individuals may be advised to take precautionary measures to reduce exposure to pollutants. VOC monitoring is crucial in various settings, including indoor environments (homes, offices, schools) to assess indoor air quality, industrial facilities to monitor emissions and comply with regulations, and environmental monitoring to understand outdoor air quality and potential health impacts on communities. Regular monitoring and control of VOC levels help ensure a safe and healthy environment for both humans and ecosystems.

The VOC sensor used in Regio RCX controllers is a MOX (Metal Oxide technology) based gas sensor for indoor air quality measurement.

Interpreting the VOC Index

A VOC Index above 100 indicates more VOC's than the average (e.g., due to cooking, cleaning, or other events). A VOC Index below 100 suggests fewer VOC's than average (e.g., fresh air from an open window). The VOC Index adapts its gain based on past 24-hour events, allowing consistent quantification on the same limited scale.

You can use the VOC index to trigger a higher amount of fresh air. Such as, by activating the VOC Control function with a setpoint for VOC index.

External VOC sensors

Any type of external VOC sensor can be connected to Regio RCX controllers, as long as they have a 0...10 V output.

3.5.7 Manual/Auto

Manual output settings

All outputs offer the possibility to be set manually, overriding any application layer. This to handle special functions from, for example, a SCADA system.

There are two ways to manually control the outputs: Controlling the output function or directly control the physical output hardware.

Output function control

When controlling an output function, such as *Heat 2*, the corresponding value variable will be affected as well as any output configured to this function.

The ManSelect variables have three allowed values:

- ✓ 0: Off The output is off. Valve exercise is disabled.
- √ 1: Manual The output value is taken from the corresponding Manual variable. Valve exercise is enabled.
- ✓ 2: Auto Normal function. The output value is taken from the corresponding value variable.

Output hardware control

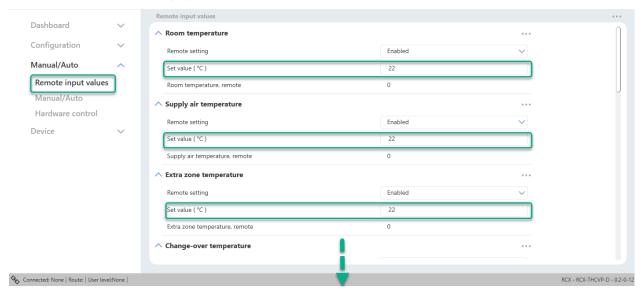
When controlling the output hardware the physical output is controlled directly, regardless of which function is configured for the output. This overrides any other control of the output, including valve exercise.

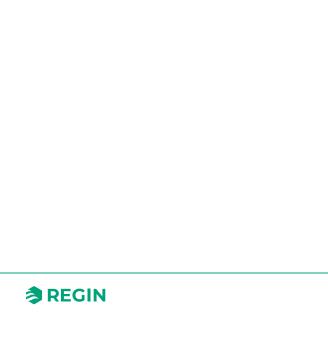
Remote input values

If the controller is part of a bigger system, sensor values can be written from a master controller or a SCADA system over the communication bus, using Modbus, BACnet or EXOline. If the sensor value is set in remote mode, it overrides all local sensors.

The following values can be set remotely:

- ✓ Room temperature
- ✓ Supply air temperature
- ✓ Extra zone temperature
- √ Change-over temperature
- √ Change-over VAV temperature
- ✓ CO₂ level
- ✓ Room humidity
- ✓ Air flow
- √ VOC input
- ✓ Digital inputs
 - ✓ Presence detection
 - ✓ Open window
 - ✓ Condensation
 - ✓ External alarm (DI)




Figure 3-39 Remote input values settings in Application tool 2

For more information, see section 3.10 Sensor values via communication.

3.6 Regin:GO - Menu structure

The Regin:GO menu structure for the Regio RCX application can be found in the RCX - Menu Structure document, available at www.regincontrols.com.

3.7 Control function examples - Regio RCX series

3.7.1 Hotel 1 - Heating (actuator radiator) + VAV and Extra Zone (control of bathroom w. floor heating)

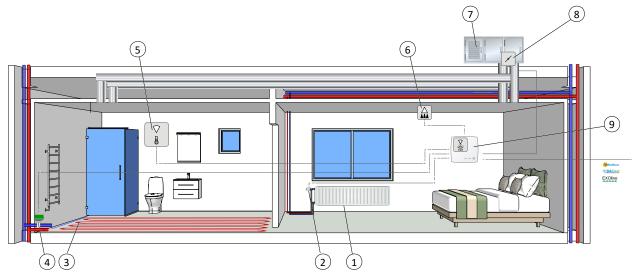


Figure 3-40 Illustration of application example - Hotel 1

① Radiator	6 Presence detector
② Thermal actuator	⑦ AHU
③ Floor heating	8 Damper / damper actuator
Actuator	RCX controller, w. temperature and CO ₂ sensor
Temperature sensor, for Extra zone	

This control sequence is suitable for room HVAC systems that use a radiator as a heating device, and low supply air temperature that is distributed into the room via a diffuser to provide cooling and fresh air. The air must be pretreated in the AHU.

The desired room temperature is achieved by controlling the thermal actuator (2) and the VAV damper (8). In addition, the VAV damper can be opened via the CO_2 function to increase the fresh air in the room, see section CO_2 control.

If the temperature drops below the heating setpoint, the controller will go into heating mode and open the valve to the actuator to increase the temperature in the room.

If the temperature rises above the cooling setpoint, the controller will go into cooling mode and open the damper to lower the temperature in the room.

Table 3-43 Controller output configuration values and controller output types

Output signal	Controller output configuration value	Controller output type
Heating signal	Heating	Analog
	Heating valve, thermal (PWM, Pulse Width Modulation)	Digital
VAV signal	VAV	Analog

Figure 3-41 illustrates the control behaviour when the controller regulates based on the heating and cooling demand, when no maximum or minimum limits are set for the heating output signal.

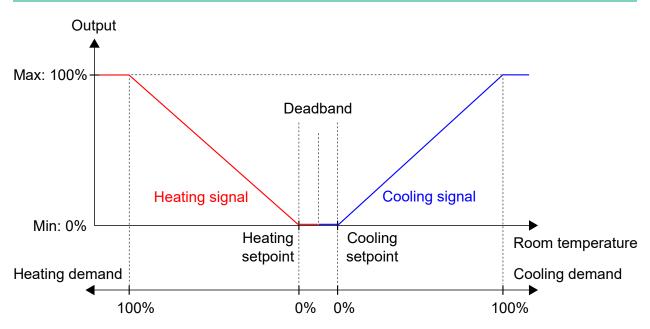


Figure 3-41 Control behaviour for the Heating + Cooling controller mode

For specific wiring examples, based on the application examples in section 3.7 Control function examples - Regio RCX series, see section 4.1.5 Wiring - Control function examples.

Extra zone

In this example, the *Extra zone* function is used to control the under floor heating in a bathroom. For more information, see section 3.5.2 *Extra zone*.

3.7.2 Hotel 2 - Heating (battery) + Cooling (battery) + Fan Control (EC-Fan)

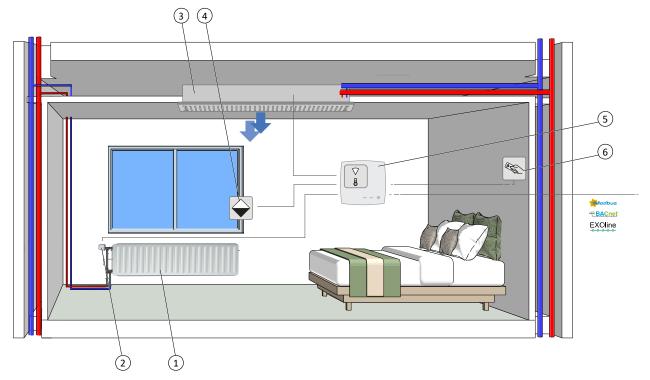


Figure 3-42 Illustration of application example - Hotel 2

This controller sequence is suitable for room HVAC systems that use a radiator or fan coil unit as a heating device, and a fan coil unit as a cooling device.

The controller acts as a heating and cooling controller and regulates based on the heating setpoint, cooling setpoint, and the current room temperature.

The temperature range between the heating and cooling setpoints is defined as the deadband. The controller is in heating mode when the room temperature is lower than heating setpoint plus half the deadband, and in cooling mode when the room temperature is higher than [cooling setpoint minus half the deadband].

When in heating mode, the controller outputs a heating signal, Heating signal, that is configured on the controller outputs by using the values listed in *Table 3-44*.

When in cooling mode, the controller outputs a cooling signal, Cooling signal, that is configured on the controller outputs by using the values listed in *Table 3-44*.

Table 3-44 Controller output configuration values and controller output types

Output signal	Controller output configuration value	Controller output type
HeatingI signal	Heating	Analog
	Heating valve, thermal (PWM, Pulse Width Modulation, Pulse Width Modulation)	Digital
Cooling signal	Cooling	Analog
	Cooling valve, thermal (PWM, Pulse Width Modulation, Pulse Width Modulation)	Digital
6-way valve signal	6-way valve	Analog

Figure 3-43 illustrates the control behaviour for this controller mode when no maximum or minimum limits are set.

The heating demand increases as the room temperature falls. When the room temperature falls below the heating setpoint, *Heat* sequence increases to respond to the heating demand. At a heating demand of 100%, *Heat* sequence reaches its maximum. When the room temperature is in the range between the heating setpoint and the deadband centre and no heating demand exists, *Heat* sequence is at its minimum.

The cooling demand increases as the room temperature rises. When the room temperature rises above the cooling setpoint, *Cool* sequence increases to respond to the cooling demand. At a cooling demand of 100%, *Cool* sequence reaches its maximum. When the room temperature is in the range between the cooling setpoint and the deadband centre and no cooling demand exists, *Cool* sequence is at its minimum.

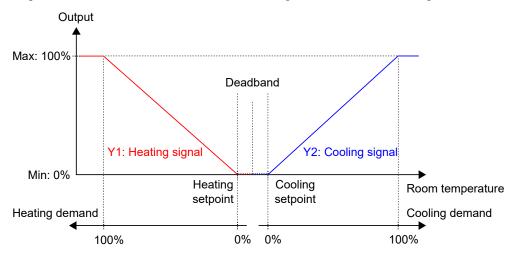


Figure 3-43 Control behaviour for the Heating + Cooling controller sequence

For specific wiring examples based on the application examples in section 3.7 Control function examples - Regio RCX series, see section 4.1.5 Wiring - Control function examples.

Fan Control

The controller outputs a fan speed signal, **Fan speed output**, that is configured on a controller output by using the value in *Table 3-45*.

In auto mode, the **Fan speed output** signal corresponds to the current heating or cooling demand, as illustrated in *Figure 3-30*.

In manual mode, the Fan speed output signal is independent of the current heating or cooling demand. Instead, the fan speed 1, 2, and 3 signals are defined by a number of equal thirds relative to the Limit maximum EC fan speed to (%) configuration setting, as illustrated in *Figure 3-31*. For example, the fan speed 1 signal is equal to 0.33 times the set maximum fan speed value, and the Fan speed 2 signal is equal to 0.67 times the set maximum fan speed value.

Table 3-45 EC fan control configuration value and controller input type

	Controller output configuration value	Controller output type
Fan speed output	EC fan	Analogue

The Fan control configuration settings are described in *Table 3-33*.

See section 4.1.5 Wiring - Control function examples for specific wiring examples based on the application examples in section 3.7 Control function examples - Regio RCX series.

3.7.3 Office - Heating/Cooling (change-over) + Fan Control

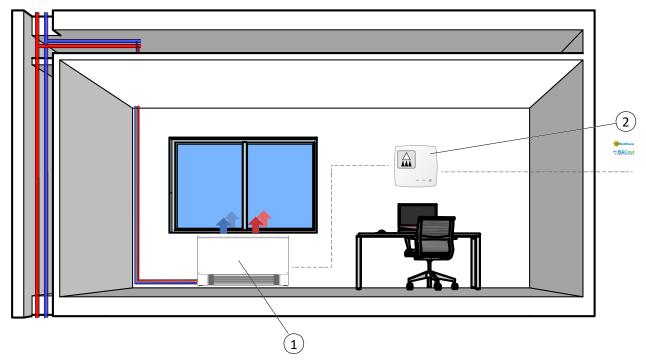


Figure 3-44 Illustration of application example - Office

1 2-pipe fan coil (heating/cooling)

2 RCX controller, presence detector

This control sequence is suitable for room HVAC systems that use a 2-pipe fan coil as a heating and cooling device. The *Change-over* function makes it possible to use the controller in a 2-pipe change-over system, where warm or cold media flow in the same pipes and one valve is used to regulate both heating and cooling distribution.

The controller acts as a heating or cooling controller and regulates based on the heating setpoint, cooling setpoint, and the current room temperature.

The controller is either in heating or cooling mode, and switches between the modes according to its current *Change-over* state.

For more information, see section Change-over.

When the controller is in heating or cooling mode, the controller outputs a heating or cooling signal, that is configured on the controller outputs by using the configuration values listed in *Table 3-46*.

Maximum and minimum limits for the output signal can be set.

Table 3-46 Controller output configuration values and controller output types

Output signal	Controller output configuration value	Controller output type
_	Change-over valve	Analog
(cooling mode)	Change-over valve, thermal (PWM, Pulse Width Modulation, Pulse Width Modulation)	Digital

Figure 3-45 illustrates the control behaviour in heating mode, and when no maximum or minimum limits are

The heating demand increases as the room temperature falls. When the room temperature falls below the heating setpoint: Change-over (heating mode) signal increases to respond to the heating demand. At 100% heating demand: Change-over (heating mode) signal reaches its maximum.

When the room temperature is higher than the heating setpoint and no heating demand exists: Change-over (heating mode) signal is at its minimum.

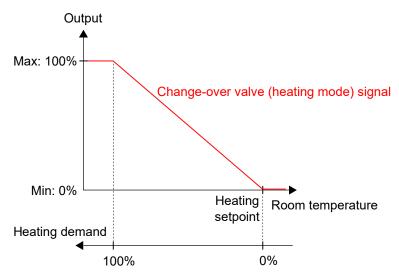


Figure 3-45 Control behaviour for the Heating/Cooling (change-over) controller sequence when the controller is in heating mode

Figure 3-46 illustrates the control behaviour in cooling mode, and when no maximum or minimum limits are set.

The cooling demand increases as the room temperature rises. When the room temperature rises above the cooling setpoint, the Change-over (cooling mode) signal increases to respond to the cooling demand. At 100% cooling demand, the Change-over (cooling mode) signal reaches its maximum.

When the room temperature is lower than the cooling setpoint and no cooling demand exists, the Changeover (cooling mode) signal is at its minimum.

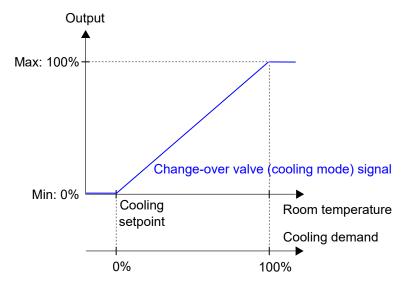


Figure 3-46 Control behaviour for the Heating/Cooling (change-over) controller sequence when the controller is in cooling mode

For specific wiring examples based on the application examples in section 3.7 Control function examples - Regio RCX series, see section 4.1.5 Wiring - Control function examples.

Fan Control (façade unit)

The controller outputs a fan speed signal, that is configured on a controller output by using the value in *Table 3-45*.

In auto mode, the signal corresponds to the current heating or cooling demand, as illustrated in *Figure 3-30*.

In manual mode, the signal is independent of the current heating or cooling demand. Instead, the fan speed 1, 2, and 3 signals are defined by a number of equal thirds relative to the **Limit maximum EC fan speed to** (%) configuration setting, as illustrated in *Figure 3-31*. For example, the fan speed 1 signal is equal to 0.33 times the set maximum fan speed value, and the fan speed 2 signal is equal to 0.67 times the set maximum fan speed value.

The Fan control configuration settings are described in *Table 3-33*.

For specific wiring examples based on the application examples in section 3.7 Control function examples - Regio RCX series, see section 4.1.5 Wiring - Control function examples.

3.7.4 Conference - Heating (actuator radiator) + Cooling (chilled ceiling) + VAV (CO₂)

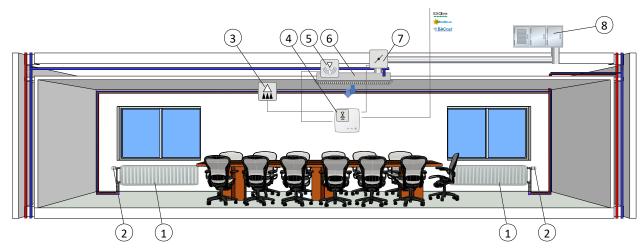


Figure 3-47 Illustration of application example - Conference

Radiator
 Condensation sensor
 Thermal actuator
 Chilled beam
 Presence detector
 Damper, damper actuator
 RCX controller, with CO₂ sensor
 AHU

The room control sequences Sequence 1 - Heat, Sequence 2 - Cool, and Sequence 3 - VAV are suitable for room HVAC systems that use a radiator as a heating device and a chilled beam as a cooling device, where the beam contains a cooling valve and a damper that regulates low supply air temperature that is distributed into the room to provide cooling and fresh air. The air must be pretreated and cooled since the damper itself does not have any cooling capacity.

The controller acts as a heating and cooling controller and regulates based on the heating setpoint, cooling setpoint, and the current room temperature. In addition, the controller can be set to also regulate based on fresh air demand, or based on the cooling demand and fresh air demand simultaneously. See section *VAV* control source.

The controller regulates based on the fresh air demand by using CO₂ control. See section CO₂ control.

The temperature range between the heating and cooling setpoints is defined as the deadband. The controller is in heating mode when the room temperature is lower than heating setpoint minus half the deadband, and in cooling mode when the room temperature is higher than cooling setpoint plus half the deadband.

When in **Heat** sequence, the controller outputs both a heating signal and a VAV signal. These are configured on the controller outputs by using the values listed in *Table 3-47*.

When in cooling mode, the controller outputs a cooling signal and a VAV signal, in sequence, that are configured on the controller outputs by using the configuration values listed in *Table 3-47*.

The signal sequence order is configurable.

Maximum and minimum limits for the heating and cooling output signals can be set. Maximum and minimum limits for the VAV output signal are set via the VAV sequence. See section *VAV control source*.

Table 3-47 Controller output configuration values and controller output types

Output signal	Controller output configuration value	Controller output type
Heating signal	Heating	Analog
	Heating valve, thermal (PWM, Pulse Width Modulation, Pulse Width Modulation)	Digital
Cooling signal	Cooling	Analog
	Cooling valve, thermal (PWM, Pulse Width Modulation, Pulse Width Modulation)	Digital
Heating signal + Cooling signal	6-way valve	Analog
VAV signal	VAV	Analog

Figure 3-48 illustrates the control behaviour when the controller regulates based on heating and cooling demand, when no maximum or minimum limits are set for the heating or cooling output signals, and when a minimum limit is set for the VAV output signal.

The heating demand increases as the room temperature falls. When the room temperature falls below the heating setpoint, *Heating signal* increases to respond to the heating demand. At a heating demand of 100%, the *Heating signal* reaches its minimum. When the room temperature is in the range between the heating setpoint and the deadband centre, and no heating demand exists, *Heating signal* is at its minimum.

The cooling demand increases as the room temperature rises. When the room temperature rises above the cooling setpoint, the Cooling signal increases to respond to the cooling demand. At a cooling demand of 49%, the Cooling signal reaches its maximum. When the room temperature rises further and the cooling demand exceeds 51%, the VAV signal increases while the Cooling signal stays at its maximum. At a cooling demand of 100%, the VAV signal reaches its maximum. When the room temperature is in the range between the cooling setpoint and the deadband centre, and no cooling demand exists, both the Cooling signal and the VAV signal are at their minimum.

The VAV signal never goes below its set minimum limit.

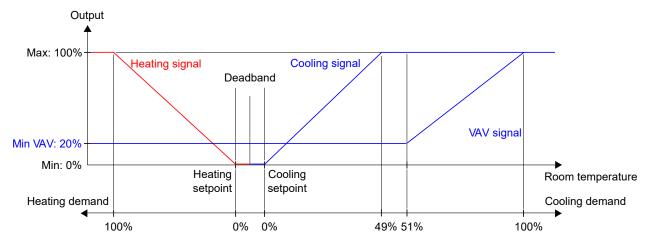


Figure 3-48 Control behaviour for the Heating + Cooling + VAV controller mode when the controller regulates based on heating and cooling demand

For specific wiring examples based on the application examples in section 3.7 Control function examples - Regio RCX series, see section 4.1.5 Wiring - Control function examples.

CO_2

 CO_2 control is a function that enables the controller to regulate based on fresh air demand. CO_2 control is performed by connecting a CO_2 sensor, and by letting the controller control the VAV output signal based on the CO_2 setpoint and the current CO_2 level in the room.

 CO_2 control is managed via the VAV control function, by applying the VAV control configuration setting. See section VAV control source.

The CO_2 sensor is connected to and configured on an analogue controller input by using the value listed in *Table 3-48*. Regin's RCX-TC,RCX-TC-D,RCX-TCP-D, RCX-THCVP and RCX-THCVP-D. controllers have a built-in CO_2 sensor. When either of these units is used, the controller recognizes the built-in CO_2 sensor automatically, and no configuration is needed.

Table 3-48 CO₂ control configuration value and controller input type

Configuration value	Controller input type
CO ₂ sensor	Analogue

CO₂ control provides a specific setting, listed in *Table 3-49*, that is only applicable when the Room Control Sequence includes a VAV sequence. This setting is located in the Configuration► Control functions pane in the Regin:GO app or the Application tool 2, and is shown when a VAV sequence is selected.

Table 3-49 CO₂ control configuration setting

Configuration setting	Description
<u> </u>	The VAV output signal is controlled by CO ₂ level in addition to other selected sources, the highest demand controls the output.

Figure 3-49 illustrates the control behaviour for CO₂ control when a minimum limit is set for the VAV output signal.

The demand for fresh air increases as the CO_2 level in the room rises. When the CO_2 level rises above the CO_2 setpoint, VAV signal increases to respond to the fresh air demand. At 100% fresh air demand, VAV signal reaches its maximum.

When the CO₂ level in the room is lower than the CO₂ setpoint and no fresh air demand exists, VAV signal is at its minimum.

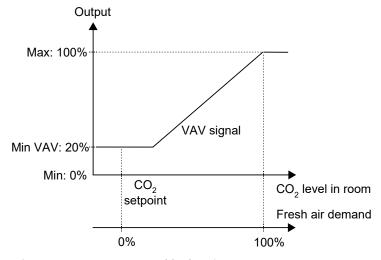
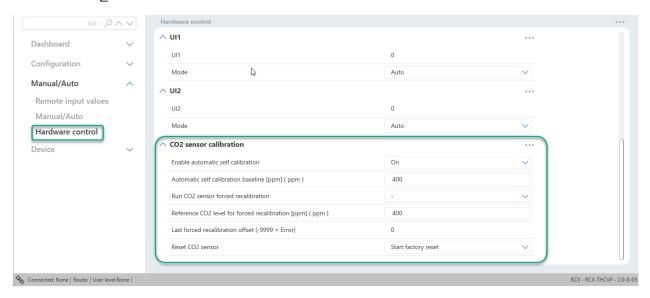



Figure 3-49 CO₂ control behaviour

For specific wiring examples based on the application examples in section 3.7 Control function examples - Regio RCX series, see section 4.1.5 Wiring - Control function examples.

3.8 CO₂ sensor calibration

The Automatic Sensor Calibration (ASC) algorithm ensures long-term measurement stability without requiring manual recalibration. It analyses historical sensor data and assumes exposure to a known minimum CO_2 concentration at least once during each calibration cycle. By default, the algorithm presumes the sensor is exposed to outdoor air with a CO_2 concentration of 400 ppm for a minimum of three (3) minutes every seven (7) days.

Setting values	Variable	Description
Enable automatic self calibration	SCD40_ASC_enable	Activates or deactivates the automatic calibration function for the CO ₂ sensor. 0 = Off 1 = On (default)
Automatic self calibration baseline [ppm]	SCD40_ASC_target	Defines the baseline CO ₂ concentration (in ppm) used by the ASC algorithm as the expected minimum background level during each calibration cycle. This value represents the lower bound to which the sensor is assumed to be regularly exposed. Value 300 to 1200 (ppm), 400 (default)
Run CO2 sensor forced recalibration	SCD40_FRC_enable	Forced Recalibration (FRC) allows the sensor to be manually calibrated using a known reference CO_2 concentration. This method is recommended when ASC is not sufficient or when immediate correction is required. Before initiating FRC, ensure the sensor is placed in an environment with a stable and homogeneous CO_2 concentration for at least three (3) minutes. Set this parameter to 1 to begin a manual recalibration of the CO_2 sensor. The value will automatically reset to 0 upon completion. $0 = Off (default)$ $1 = Run calibration$
Reference CO2 level for forced recalibration [ppm]	SCD40_FRC_target	Specifies the CO ₂ concentration (in ppm) to be used as the reference value during forced recalibration. This should reflect the actual CO ₂ level at the sensor's location during calibration. Value 300 to 1200 (ppm), 400 (default)

Information for the specialist

Setting values	Variable	Description
Last forced recalibration offset (-9999 = Error)	SCD40_FRC_result	Displays the correction value applied during the most recent FRC operation (in ppm). A value of -9999 indicates that the calibration attempt failed. Value = 0 (default) Value = -9999 (calibration attempt failed)
Start factory reset	SCD40_factory_reset	Set this parameter to 1 to reset the CO ₂ sensor to its original factory configuration. The value will revert to 0 once the reset is complete. This command erases all user-defined settings and clears the history of both ASC and FRC algorithms. 0 = Off (default) 1 = Reset to factory default

3.9 External sensors

The following external sensors can be connected to an AI. A connected external sensor will replace the internal sensor if one of those are available. PT1000 sensors must be connected to UI1, and 0...10 V sensors to UI1 or UI2.

All 0...10 V sensor inputs are scalable, 0V = XX: 10V = YY to get it in the correct unit.

Table 3-50 Sensor types and variables

Sensor	Туре	Value variable
Room sensor 1	PT1000	RC_RoomTemp
Change-over media temperature	PT1000	RC_ChangeOverTemp
Change-over VAV media temperature	PT1000	RC_ChangeOverVAVTemp
Extra zone temperature	PT1000	RC_ExtraZoneTemp
Supply air temperature	PT1000	RC_SupplyAirTemp
Room Sensor ¹	010 V	RC_RoomTemp
CO ₂ sensor ₁	010 V	RC_CO2Level
Humidity sensor 1	010 V	RC_Humidity
VOC sensor 1	010 V	RC_VOC
Air Volume	010 V	RC_AirFlow
Presence detector	Digital	RC_DIPresence
Open window	Digital	RC_DIOpenWindow
Change-over	Digital	RC_DIChangeOver
Change-over VAV	Digital	RC_DIChangeOverVAV
Condensation sensor	Digital	RC_DICondensation
External alarm	Digital	RC_AlarmDI

^{1.} Replace the internal sensor, if one of those are available.

3.10 Sensor values via communication

If the controller is part of a bigger system, sensor values can be written from a master controller or a SCADA system over the communication bus, using Modbus, BACnet or EXOline. If the sensor value is set in remote mode, it overrides all local sensors.

The following sensor values can be set remotely:

- √ Room temperature (°C)
- ✓ CO₂ (ppm)
- ✓ Air flow
- √ Change-over temperature (°C)
- ✓ Extra zone temperature (°C)
- √ Supply air temperature (°C)
- ✓ Relative humidity (%)
- ✓ VOC (Volatile Organic Compounds), (VOC Index, range 0-500, 100 = 24 h average)

For more information, see also section 3.5.7 Manual/Auto.

3.11 Special functions

3.11.1 Condensation sensor

You can use the analogue output connection (AO2) as a condensation sensor input (CI driver) on all Regio RCX controllers. This input is intended for Regin's condensation sensor, KG-A/1, and function as a digital input for condensation or no condensation detection internally. For more information, see section 4.1.4 Wiring.

When the condensation sensor is activated, the cooling control is blocked and the controller is set in neutral position. When condensation ceases, the controller will start controlling from the neutral position.

3.11.2 Window contact

When the *Window contact* function has been configured, the controller is set to **Normal** mode on *Closed window*. On *Open window*, the controller is set to off mode and the *Frost protection* function is activated.

3.12 Communication

3.12.1 Networks, interfaces and protocols - Factory default

In *Table 3-51 Networks and interfaces, factory default status* and *Table 3-52 Protocols, factory default status* you find the supported network interfaces and protocols, including the factory default settings.

Table 3-51 Networks and interfaces, factory default status

Network/Interface	Status from factory default	Description
RS485	ON	Serial interface with differential signal levels, allowing for reliable data exchange between controllers, sensors, and actuator over a bus with multiple other devices. Connection for SCADA configurations.
Bluetooth® Low Energy		The Bluetooth® Low Energy interface is a wireless interface used to temporarily connect to the device from a mobile phone, or tablet. The interface is used with the Regin:GO app for installation, configuration and maintenance of the device.

Caution! When you configure the device exclusively via RS485 using Application tool 2, it is recommended to disable Bluetooth® Low Energy (BLE) during setup. If BLE remains enabled, the device may still be accessed and reconfigured via Regin:GO using the default password. Please note that this password can only be changed within the Regin:GO interface.

Table 3-52 Protocols, factory default status

Protocol	Status from factory default	Used in interface	Description
EXOline	ON	RS485	Regin specific protocol. EXOline is used for communication and reliable, real-time data exchange between controllers, sensors, and other field devices within Regin's EXO system and SCADA. Here used for device configuration, system maintainance, communication with other devices, SCADA etc. The difference compared to Modbus and BACnet, is that EXOline allows more configuration and is used by Regin's own tools (such as, Application tool 2).
Modbus	OFF	RS485	Modbus standardized protocol. Used for communication with other devices and/or SCADA systems.
BACnet	OFF	RS485	BACnet standardized protocol. Used for communication with other devices and/or SCADA systems.

3.12.2 Communication settings

In the **Device - Communication** page, you can set port settings, the Modbus address, and the Bluetooth® function settings.

The port 1 settings can be altered between the EXOline, Modbus, BACnet communication protocols, or be disabled.

For EXOline, you can set the PLA and ELA addresses (in Regin:GO) 1.

For the Modbus protocol, the Modbus address can be set here. And for BACnet the properties can be set. You can also change the Bluetooth® connection settings, for how and when the connection is made.

Communication fail settings can also be set from this page. For more information, see *Table 3-53* Communication settings.

Table 3-53 Communication settings

Setting values	Variable name	Description
Port 1 function	RC_Port1Mode	Setting of the port 1 function: Disabled EXOline slave (default) Modbus slave EXOline/Modbus slave BACnet
Port 1 baudrate	RC_Port1Baud	Setting of the port 1 baudrate: 9600 (default) 19200 38400 76800
Port 1 parity	RC_Port1Format	Parity bit settings: No parity, 1 stop bit Odd parity, 1 stop bit (default) Even parity, 1 stop bit No parity, 2 stop bits Odd parity, 2 stop bits Even parity, 2 stop bits
PLA	QSystem.PLA	Address according to the PLA address on the device label.1
ELA	QSystem.ELA	Address according to the ELA address on the device label.
Modbus address	QServices.ModbusUnitID	The same setting as ELA (default)
BACnet MSTP address	QServices.BACnetMstpMAC_ Port_1	Setting of the BACnet MSTP address. Default set to a number between 64 and 127 (default).
MSTP max master address	QServices.BACnetMstpMax- MasterAddr_Port_1	Setting of the MSTP max master address. (default = 127)
BACnet device ID	QServices.BACnetDeviceID	Setting of the BACnet Device ID. Set to the last 6 digits of the serial number (default).
BACnet device object name	QServices. BACnetDeviceObjectName	Setting of the BACnet device object name. Device name with the serial number appended to the end, "RCX012509111234" (default).
Password	QServices.BACnetPassword	Setting of a BACnet password. Need to be set by user (default).
Bluetooth® function	BleButtonMode	Setting on when the Bluetooth® function is activated or inactivated: Off Always on On after startup Activated by button (default)
Turn off after (s)	BleButtonTimeout	Setting of when the Bluetooth® connection is turned off. 120 = (default)

Table 3-53 Communication settings (continued)

Setting values	Variable name	Description
Fail action	RC_OfflineFunction	Setting of action(s) if communication fails: No action (default) State to fallback state Outputs to default values Outputs to default, start offline
Timeout (s)	RC_OfflineTimeout	Setting of an offline timeout threshold. 10 = (default)
Fallback state	RC_ControllerStateFail	Setting of desired fallback state (at loss of communication): Off Unoccupied Standby (default) Occupied Forced ventilation
Status	RC_Offline	Status description of the current communication status.

^{1.} Note! In Application tool 2, the EXOline PLA and ELA addresses are changed from the Tools menu, in Change controller address.

3.13 Update software

When there is a software update available for the device, you will be prompted to update the software. You can also manually update the device software in Regin:GO whenever you need through the **Action** menu in , if you are connected to the device. See section 3.13.1 Updating the device software in Regin:GO.

3.13.1 Updating the device software in Regin:GO

- 1. In the Regin:GO menu, tap the [Actions] button.
- 2. In the dropdown menu, tap [Update software].
- 3. In the Update software page, tap [Available software].
- 4. Select the desired software version.
- 5. Tap the [Update software] button.
- 6. In the Update software dialog, choose [Save settings], [Continue with update], or [Cancel].

Note! Regin recommend to save your settings before a software update. The update can cause the settings to be reset to default, and then you can use the saved file to restore your settings.

7. To continue with device software update, tap [Continue with update]. You will be prompted with the update process progression.

Note! Do <u>not</u> leave the **Update software** page during the update process.

8. When the software update is finished, in the Update software dialog, tap [Return to device] list.

3.14 Factory reset

You can reset the device to factory settings with use of the touch buttons (available also for devices without visible buttons). To reset the device with the touch buttons, follow the procedure 3.14.1 Resetting the device to factory settings within the first 60 seconds after starting the device.

3.14.1 Resetting the device to factory settings

- 1. Make sure that the device has been turned off
- 2. Start the device
- 3. Press and hold on the upper right part of the device (keep active during the full sequence), within the first 60 seconds after starting the device
- 4. Press and hold the lower right part of the device ([Menu] button) for approximately 10 seconds. During this time the indication will be green, when done it will change to red.
- 5. Release the lower right part of the device ([Menu] button)
- 6. Press (and release) the lower right part of the device ([Menu] button) three (3) times in 10 seconds
- 7. The LED flashes in green for a short time to confirm a successful factory reset, and the device restarts with default settings

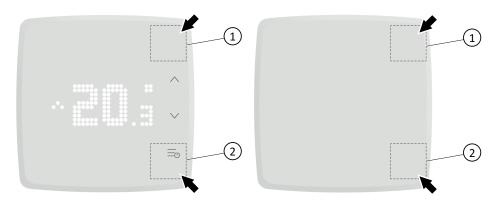


Figure 3-50 Factory reset press areas (with/without display)

① Upper right part of the device ② Lower right part of the device, [Menu] button

If you have not succeeded in pressing the lower right part of the device (2)([Menu] button) three (3) times during ten (10) seconds in step 6., or you release the upper right part of the device (1), the reset operation is interrupted and the LED returns to what it showed before. Start with step 3. anew, if you still want to make a factory reset.

4 Information for the installer

4.1 Installation

4.1.1 Installation preparations

See the Regio RCX-... Instruction, to be found at www.regincontrols.com.

4.1.2 Using labels

On the back of the electronics cassette, there is a set of labels which make it easier to install a large number of Regio RCX controllers. By using the labels as carriers of information for the installation engineer, much time will be saved and you can keep wiring errors at a minimum.

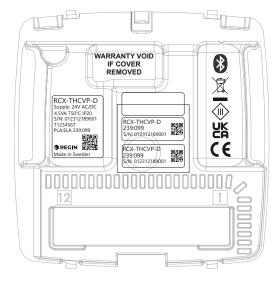


Figure 4-1 Labels on the back of the controller (example label illustrated, may vary)

The three-piece label can be split and the two (2) smaller label parts to the right can be fastened to the installation drawing and the backplate of the controller. The labels carry information on the communication address etc., and have QR codes and a note area where you can enter a reference number to the connection diagram.

4.1.3 Mounting

Caution! If the unit is mounted over electrical installation pipes, it is important that the airflow is not obstructed. If there is a risk for this, you need to plug the pipe.

- 1. With surface-mounted cabling, break out suitable holes from the marks in the plastic
- 2. Find a location that has a temperature representative for the room. A suitable location is approximately 1.6 m above floor level in a place with unobstructed air circulation
- 3. Select suitable holes and mount the backplate onto the wall or a connection box with fastening screws, so that the arrows on the backplate point upwards
 The backplate has several fixing hole combinations

Note! Do not tighten the fastening screws too hard

- 4. Place the terminal in the sliding slots on the backplate
- 5. Connect the cables needed to the terminal, according to the terminal list

For more information, see the Regio RCX-... Instruction, to be found at www.regincontrols.com.

4.1.4 Wiring

All units that share the same transformer and communication loop must use the same transformer-pole for G (terminal 1) and G0 (terminal 2). On the communication loop, the A-terminal (terminal 3) should only be connected to another A-terminal, and the B-terminal (terminal 4) to another B-terminal. Otherwise, the communication will not work.

The communication cable must be a screened twisted pair cable. The shield must be connected to G0 on one (and only one) controller in each separate power supply loop with 24 V AC. If the length of the loop exceeds 300 m, a repeater is required. See *Figure 4-2 Wiring example - communication cable*.

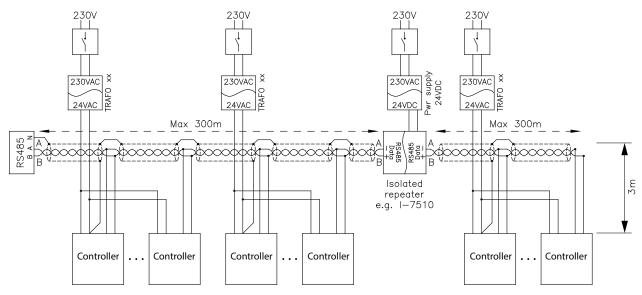


Figure 4-2 Wiring example - communication cable

Caution! In installations with wires entering the device from the side, the wires must be firmly attached to the surrounding wall to relieve the wires from strain and twisting, as there are no internal strain relief.

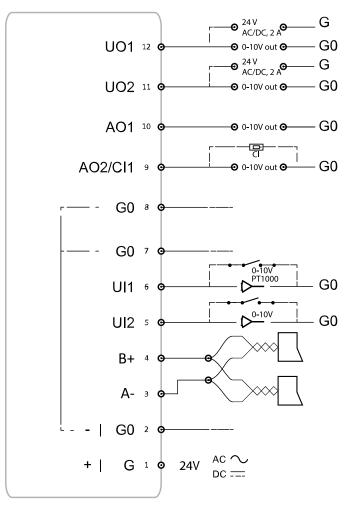


Figure 4-3 Example of terminal locations below shows an example of the location of the terminals.

Figure 4-3 Example of terminal locations

4.1.5 Wiring - Control function examples

Below you find wiring examples based on the application examples in section 3.7 Control function examples - Regio RCX series.

Wiring - Hotel 1

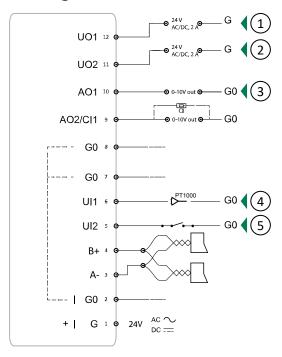


Figure 4-4 Wiring example - for application example Hotel 1

1 Heating valve, thermal (PWM)

4 External room temperature

② Extra zone valve, thermal (PWM)

5 Presence detector

(3) V/AV

For more information, see section 3.7.1 Hotel 1 - Heating (actuator radiator) + VAV and Extra Zone (control of bathroom w. floor heating).

Wiring - Hotel 2

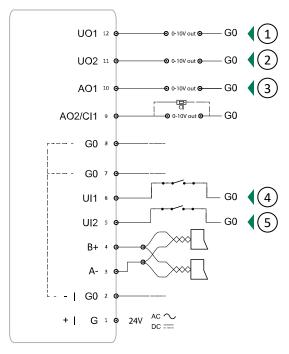


Figure 4-5 Wiring example - for application example Hotel 2

Heating
 Open window
 Cooling
 Presence detector
 EC Fan

For more information, see section 3.7.2 Hotel 2 - Heating (battery) + Cooling (battery) + Fan Control (EC-Fan).

Wiring - Office

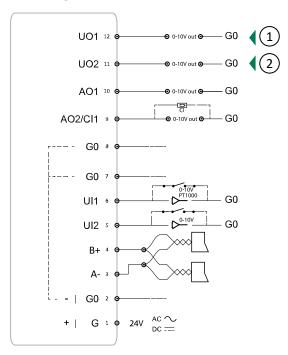


Figure 4-6 Wiring example - for application example Office

1 Change-over cooling

② EC Fan

For more information, see section 3.7.3 Office - Heating/Cooling (change-over) + Fan Control.

Wiring - Conference

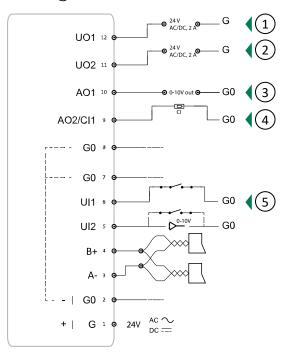


Figure 4-7 Wiring example - for application example Conference

1 Heating valve, thermal (PWM)

4 CI driver

2 Cooling valve, thermal (PWM)

⑤ Presence detector

③ VAV

For more information, see section 3.7.4 Conference - Heating (actuator radiator) + Cooling (chilled ceiling) + VAV (CO₂).

4.1.6 Troubleshooting

It is possible to detach the terminal from the backplate when troubleshooting, and perform measurements on the terminal while the controller is connected.

5 Conformity

Hereby, Regin declares that the radio equipment type Regio RCX series is in compliance with Directive 2014/53/EU.

Regio RCX series complies with EN IEC 60730-1, as a class A control.

This radio equipment device is approved for use in all countries within the European union.

(€

This product carries the CE-mark. More information is available at www.regincontrols.com.

Appendix A Technical data

A.1 General data

24 V AC (50 - 60 Hz) or DC			
25 x 11 pixels			
2.5 VA			
050 °C			
Max. 90 % RH			
-20+70 °C			
Lift type for cable cross-section 2.1 mm ²			
IP30			
Polycarbonate (PC)			
Cover: RAL9003 (signal white) Backplate assembly: RAL9003 (signal white)			
8 bits, 1 or 2 stop bits. Odd, even or no parity.			
9600, 19200, 38400, or 76800 bps (for all protocols)			
050 °C			
±0.5°C at 1530 °C1			
Typical: 2 % RH (10-90 %), 3 % RH (<10 or >90), Max: 3.5 % RH (10-90), 5 % RH (<10 or >90)			
02000 ppm Update frequency: 5 s			
±50 ppm + 5% (measured value,MV) @400-2000 ppm			
Detection angle 110°, distance 5 m at 8 °C temp. difference between object and room temp. = up to 7 m at 4 °C temp. difference between object and room temp. = up to 5 m (Target conditions: movement 1.9 m/s, object size approx. 700x250 mm)			
Note! Depending on the temperature difference between the target and the surroundings, detection range will change.			
VOC Index, range 0-500 (100 = 24 h average)			
Room/Wall			
115 g			
Low (RCX-BL) backplate assembly: 94.6 x 94.6 x 21 mm Medium (RCX-BM) backplate assembly: 94.6 x 94.6 x 31 mm			

 $^{1.\,0.5\,}K\,is\,valid\,if\,current\,on\,\,UO1\,\,and\,\,UO2\,\,is\,\,lower\,than\,\,1.5\,A,\,for\,\,currents\,\,between\,\,1.5\,A\,\,and\,\,2\,A\,\,the\,\,accuracy\,\,is\,\,0.6\,\,K.$

A.2 Communication

RS485	For EXOline (with automatic detection), Modbus (with automatic detection), or BACnet.
Communication cable length, maximum	1200 m, with repeater
Bluetooth® Low Energy	Bluetooth® communication.

A.3 Inputs & outputs

All controllers have the possibility of two (2) universal inputs (UI), two (2) universal outputs (UO), and two (2) analogue outputs (AO).

Universal Output 1	AO: 010 V, 2 mA DO: 24 V /max 2 A (switches to G0)		
	Note! The maximum current is 2 A in total for output 1 and output 2.		
Universal Output 2	AO: 010 V, 2 mA DO: 24 V /max 2 A (switches to G0)		
	Note! The maximum current is 2 A in total for output 1 and output 2.		
Analogue Output 1	010 V out, 2 mA		
Analogue Output 2 / Condensation Input 1	010 V out, 2 mA Condensation input (same pin as analogue output)		
Universal Input 1	010 V PT1000 (050 °C) DI: Closing potential free contact		
Universal Input 2	010 V DI: Closing potential free contact		

Appendix B Model overview

Table B-1 Controller models

Article	Display	Buttons	Temperature sensor	Humidity sensor	CO ₂ sensor	VOC sensor	PIR sensor
RCX-T			✓				
RCX-TC			✓		✓		
RCX-TP			✓				✓
RCX-THCVP			✓	✓	✓	✓	✓
RCX-T-D	✓	✓	✓				
RCX-TH-D	✓	✓	✓	✓			
RCX-TC-D	✓	✓	✓		✓		
RCX-TP-D	✓	✓	✓				✓
RCX-TCP-D	✓	✓	✓		✓		✓
RCX-THCVP-D	✓	✓	✓	✓	✓	✓	✓
RCX-T-D-BLACK	✓	✓	✓				
RCX-TC-D-BLACK	✓	✓	✓		✓		
RCX-THCVP-D- BLACK	✓	✓	✓	✓	✓	✓	✓

Table B-2 Backplate assembly models

Article	Comments
RCX-BL	Backplate Low (signal white)
RCX-BM	Backplate Medium (signal white)
RCX-BL-BLACK	Backplate Low (jet black)
RCX-BM-BLACK	Backplate Medium (jet black)

Appendix C Alarm list

There is a simple alarm function for the Regio RCX series controllers. There are a number of logic variables that can be read from a SCADA system, and in addition a sum alarm that is set when any of the other alarms are active.

C.1 Alarms

Alarm name	Description
RC_SumAlarm	Active if any of the other alarms are active.
RC_AlarmRoomTempHigh	Room temperature is over the high alarm limit.
RC_AlarmRoomTempLow	Room temperature is under the low alarm limit.
RC_AlarmCO2High	CO ₂ level is over the high alarm limit.
RC_AlarmSensorError	An internal or external sensor is not working properly.
RC_AlarmDI	A DI set up as an alarm input is active.
RC_AlarmManualOutput	An output is controlled manually.

Appendix D Terminal list

D.1 Wiring - Terminal list

See section 4.1.4 Wiring.

Terminal	I/O
1	Power supply G+
2	Power supply G0-
3	Communication A-
4	Communication B+
5	Universal input 2
6	Universal input 1
7	G0
8	G0
9	Analogue output 2 / Condensation input 1
10	Analogue output 1
11	Universal output 2
12	Universal output 1

Appendix E Licenses

E.1 Cube MX

COPYRIGHT(c) 2017 STMicroelectronics

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
- 3. Neither the name of STMicroelectronics nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

E.2 FreeRTOS

The FreeRTOS kernel is released under the MIT open source license, the text of which is provided below.

This license covers the FreeRTOS kernel source files, which are located in the /FreeRTOS/Source directory of the official FreeRTOS kernel download. It also covers most of the source files in the demo application projects, which are located in the /FreeRTOS/Demo directory of the official FreeRTOS download. The demo projects may also include third party software that is not part of FreeRTOS and is licensed separately to FreeRTOS. Examples of third party software includes header files provided by chip or tools vendors, linker scripts, peripheral drivers, etc. All the software in subdirectories of the /FreeRTOS directory is either open source or distributed with permission, and is free for use. For the avoidance of doubt, refer to the comments at the top of each source file.

License text:

Copyright (C) 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

√ The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,

OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

E.3 Fonts

The tom-thumb.bdf (used for Font_4x3.c/.h) font can be licensed under MIT or CC0 or CC-BY 3.0 More information in this thread: https://robey.lag.net/2010/01/23/tiny-monospace-font.html

Fonts from uw-ttyp0-1.3 (used for Font_12x6.c/.h) are licensed with:

THE TTYPO LICENSE

Permission is hereby granted, free of charge, to any person obtaining a copy of this font software and associated files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, embed, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

- 1. The above copyright notice, this permission notice, and the disclaimer below shall be included in all copies or substantial portions of the Software.
- 2. If the design of any glyphs in the fonts that are contained in the Software or generated during the installation process is modified or if additional glyphs are added to the fonts, the fonts must be renamed. The new names may not contain the word "UW", irrespective of capitalisation; the new names may contain the word "ttyp0", irrespective of capitalisation, only if preceded by a foundry name different from "UW".

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

E.4 JSMN

Copyright (c) 2010 Serge A. Zaitsev

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

✓ The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

